
 Advanced search

Linux Journal Issue #36/April 1997

Features

Serial Terminal as Console by Francesco Conti
Sans video card, sans keyboard, sans monitor: the amazing
headless Linux box.

Building the Perfect Box: How to Design Linux Workstation by Eric S
Raymond

These days, it's possible to put together a decent personal Unix
Platform for less than $2,000 US.

Thread-Specific Data and Signal Handling in Multi-Threaded
Applications by Martin McCarthy

This second part of a series on Multi-threading deals with how to
use C programs with one of the POSIX packages available for
Linux to handle signals and concurrent threads

News & Articles

Creating Animations with POV-Ray by Andy Vaught
The /proc File System and ProcMeter by Andrew M. Bishop
Somebody Still Uses Assembly Language? by Richard A. Sevenich

Reviews

Product Review Applixware 4.2 for Linux by Gary Moore
Book Review Active Java and Exploring Java by Danny Yee

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/036/2040.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2084.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2121.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2121.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/1307.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/0177.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/0173.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2038.html

WWWsmith

Using Perl to Check Web Links by Jim Weirich
At the Forge Quizzes by Reuven Lerner

Columns

Letters to the Editor
From the Publisher Linux—The Internet Appliance? by Phil Hughes
Stop the Presses Usenix/Uselinux in Anaheim by Phil Hughes
Linux Means Business Using Linux at Lectra Systemes by Pierre
Ficheux
Novice to Novice A 10-Minute Guide for Using PPP to Connect Linux
to the Internet by Terry Dawson
Take Command od—The Oddest Little Text Utility Around by Randy
Zack
New Products
Linux Gazette Indexing Texts with SMART by Hans Paijmans
Linux Gazette History of the Portable Network Graphics (PNG)
Format by Greg Roelofs
Best of Tech Support by Gena Shurtleff

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2026.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2112.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2149.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2082.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2131.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2109.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2109.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/1326.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2127.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2123.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2129.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Serial Terminal as Console

Francesco Conti

Issue #36, April 1997

Complete instructions for setting up a cheap headless Linux box.

A frequently asked, but never completely answered, question in the
comp.os.linux.* newsgroups and other Linux mailing lists, is the one about
cheap, headless Linux boxes. It seems that many people need to install Linux
boxes without a video card, a monitor or a keyboard.

A cheap response to this problem is to use a serial terminal (Wyse or Ampex,
for example) as the main Linux console. This cuts the cost of a keyboard, a
video card and a monitor. I've done this very thing on my second computer, an
old 486 VLB, by using a Wyse 60 terminal.

Linking a terminal to your computer's serial port is not at all difficult. You can
easily follow the instructions in the Serial-HOWTO and in the inittab(5) and
agetty(8) man pages. Here's a short summary.

First, you must use a null modem cable.

Second, insert the following line in your /etc/inittab file, if you're using agetty.
Other getty programs, like getty_ps, use a different syntax.

ID:RUNLEVELS:respawn:/sbin/agetty -L SPEED TTY TERM

where:

• ID = a two character identifier, e.g., s1 or s2
• RUNLEVELS = Runlevels in which the terminal must be active
• SPEED = serial port speed
• TTY = tty port name relative to the /dev directory
• TERM = value to be used for the TERM environment variable

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

My machine's /etc/inittab has the following line:

s2:12345:respawn:/sbin/agetty -L 9600 ttyS1 vt100

for a serial terminal on the /dev/ttyS1 port (COM2 for DOS users), with a port
speed of 9600 BPS and vt100 terminal emulation (which seems to run better
than native Wyse 60 mode).

Finally, restart init with the command init q.

If you correctly followed these three simple steps, you should see the login
prompt on your terminal screen. You can log in and work on your machine in
the same way you can when you're actually on the console or telneting from a
remote host.

Kernel Messages

The messages the kernel shows at boot time are always directed to your main
console (tty1). If you turn on your headless box, you can only wait for the login
on the terminal, which means losing those precious messages. You can see
them by using the dmesg command, but usually you need them before the
login shell comes up.

There are other messages on your console: those generated by the scripts in
the /etc/rc.d directory, and from scripts run at boot and shutdown time. How
can you really know that “the system is halted” if you can't read it on a monitor?

You must patch the /usr/src/linux/drivers/char/console.c program in your
kernel source tree. It's not a complex kernel hack. You can follow these three
simple steps.

First, define the CONFIG_SERIAL_ECHO symbol at program start:

#define CONFIG_SERIAL_ECHO

Second, modify the address of the terminal serial port (only if you're using a
port different from that defined by default) looking for the following line:

#define SERIAL_ECHO_PORT 0x3f8 /* COM1 */

In my machine I've changed that line to:
#define SERIAL_ECHO_PORT 0x2f8 /* COM2 */

Third, rebuild your kernel and reboot: you should see on your terminal screen
the kernel messages during your system's hardware devices probe.

Please note that these steps work for a 2.0.0 kernel, not on 1.2.13. I haven't yet
had time to try other kernels. The console.c patch is necessary for all Linux
ports except the one for Alpha, which contains it in the make config with the
following option:

Echo console messages on /dev/ttyS1

Messages from /etc/rc.d/rc.*

To show these messages on your terminal, you can append > TTY to every line
of these files that contains the command echo. TTY is the terminal serial port
(the same one used in /etc/inittab serial terminal line).

LILO Configuration

If you want to choose among more than two kernel images, you have to modif
the LILO configuration file, /etc/lilo.conf.

Complete instructions for seeing the LILO prompt on serial terminals can be
found in the /usr/doc/lilo/README file (look for the SERIAL option). Here are
two steps to do that correctly.

First, edit the /etc/lilo.conf file and insert a SERIAL option line after the BOOT
option line:

serial=SERIAL_LINE,SPEED PARITY BITS

where:

SERIAL_LINE = 0 (com1)
 1 (com2)
 2 (com3)
 3 (com4)
SPEED = serial port speed
PARITY = n (= none)
 o (= odd)
 e (= even)
BITS = bits in a character (8 or 7)

Please note that there are no spaces between the SPEED, PARITY and BITS

parameters. These must be equal to the ones defined in your terminal setup.
Here's the line used by my machine's LILO:

serial=1,9600n8

This line means COM2 at 9600 BPS, no parity, 8 bits per character.

Second, execute the lilo command to update your system's configuration.

Using the SERIAL option, LILO sets a two second delay (the same as when you
put a delay = 20 line in the lilo.conf file) before booting the default kernel

image. During this pause, you can interrupt the boot process and get the LILO
prompt by sending a break to the terminal as you press the SHIFT key on your
main console.

Conclusion

At last, your serial terminal can be used as a real system console. I think that
the only thing you can't do is the CTRL-ALT-DEL reset—except, perhaps, with
certain terminal emulations. If you're lucky, you can find one of these terminals
cheaply, maybe even free, from a company upgrading its hardware.

Franceso Conti can be reached by e-mail at fconti@iper.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Building the Perfect Box: How To Design Your Linux

Workstation

Eric S. Raymond

Issue #36, April 1997

This article is a guide to building capable Linux workstations from cheap
generic PC hardware.

Most of the good things about Linux flow from the fact that it makes a full-
featured Unix accessible on inexpensive hardware. Accordingly, there's a huge
amount of documentation and folk knowledge in the Linux community about
how to get people who already have cheap hardware to use Linux on it. Up to
now there hasn't been much advice available on how to acquire cheap
hardware that is well-matched to Linux, for someone who already knows Linux.

At today's prices, it's possible to put together a terrific personal Unix platform
for less than $2,000 US. If you're prepared to go mail-order, shop carefully and
make a few minor tradeoffs, you can do it for $1,500 or even less. But beware.
If you buy as though for a DOS/Windows box, you won't get the best value or
performance. Linux works its hardware harder than Unix does, and
configurations that are marginal under DOS/Windows can cause problems
under Linux.

In this article, we'll develop a recipe for a cheap but capable Linux workstation.
While developing it, we'll discuss the recipe choices in some detail, and see how
to avoid common pitfalls that can cause you grief.

We are going to stick to Intel hardware in this article. Alphas are fast and have
that wonderful 64-bit architecture, and SPARCs too have earned their fans.
However, I think PC hardware is still overall the most cost-effective—cheapest
to buy, easiest to get serviced and best-tested with Linux. And, given the
relative sizes of the respective markets, PC hardware seems likely to hold its
lead for years yet.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

For more detail on this subject, organized in a reference rather than narrative
format, surf to my PC-Clone UNIX Hardware Buyer's Guide at http://
www.ccil.org/~esr/clone-hw-guide/contents.html. I've been maintaining this
document and its FAQ ancestor for longer than Linux has existed, and have
been running Unix on PC hardware since shortly after it first became possible
in the late 1980s.

What To Optimize

Most people think of the processor as the most important choice in specifying
any kind of personal-computer system. Our first lesson in building Linux boxes
is this: for Linux, the processor type is nearly a red herring. It's far more
important to specify a capable system bus and disk I/O subsystem.

One important reason for this is precisely because PC systems are marketed in
a way that presents processor speed as a primary figure of merit. The result is
that the development of processor technology has naturally gotten pushed
harder than anything else, and off-the-shelf PCs have processors that are quite
overpowered relative to the speed of everything else in the system. Your typical
PC these days has spare CPU-seconds it will never use, because the screen,
disk, modem and other peripherals can't be driven fast enough to tax it.

If you're already running Linux, you may find it enlightening to keep top(1)
running for a while as you use your machine. Notice how seldom the CPU idle
percentage drops below 90%.

It's true that after people upgrade their motherboards, they often report a
throughput increase. But this is often due more to other changes that go with
the processor upgrade, such as improved cache memory or an increase in the
system bus's clocking speed, i.e., enabling data to get in and out of the
processor faster.

The unbalanced, processor-heavy architecture of PCs is hard to notice under
DOS and Windows 3.1, because neither OS hits the disk very much. But any OS
that uses virtual memory and keeps lots of on-disk logs and other transaction
states is a different matter—it will load the disk more heavily and will suffer
more from the imbalance.

Linux is in this category, and I'd guess Windows NT and OS/2 are too. Assuming
you're buying for Linux on a fixed budget, it makes sense to trade away some
excess processor clocks to get a faster bus and disk subsystem.

The truth is that any true 32-bit processor now on the market is more than fast
enough for your disks under a typical Linux-like load, even if it's a lowly 386/25.
Your screen, if you're running X, can be a bit more demanding—but even a

486/50 will let you drag Xterm windows around like paper. And that's a lot
slower than the cheapest new desktop machine you'll be able to find by the
time this article hits paper.

So buy a fast bus. And especially, buy fast disks. How does this translate into a
recipe? Like this:

• Don't bother with the latest Pentium Pro whizbang 300mHz super-
scorcher with a cooling fan bigger than it is.

• Do get a PCI-bus machine.
• Do get a SCSI controller.
• Do get the fastest SCSI disks you can afford.

Buying PCI will get you maximum bus throughput, and makes sense from
several other angles as well. The doggy old ISA bus is clearly headed for
extinction at this point, and you don't hear much about its other competitors
(EISA, VESA local-bus video or MCA) anymore. With PCI now being used in
Macintoshes and Alphas as well as all high-end Intel boxes, it's clearly here to
stay, and a good way to protect your investment in I/O cards from rapid
obsolescence.

The case for SCSI is a little less obvious, but is still compelling. For starters, SCSI
is still at least 10-15% faster than EIDE running flat out. Furthermore, EIDE is
still something of a “jerry-rig”. Like Windows, it's layered over an ancestral
design (ST-512) that's antiquated and prone to failure under stress. SCSI, on the
other hand, was designed from the beginning to scale up well to high-speed,
high-throughput systems. Because it's perceived as a “professional” choice, SCSI
peripherals are generally better engineered than EIDE equivalents. You'll pay a
few dollars more, but for Linux the cost is well repaid in increased throughput
and reliability.

For the fastest disks you can find, pay close attention to seek and latency times.
The former is an upper bound on the time required to seek to any track; the
latter is the maximum time required for any sector on a track to come under
the heads, and is a function of the disk's rotation speed.

Of these, seek time is more important and is the one manufacturers usually
quote. When you're running Linux, a one millisecond faster seek time can make
a substantial difference in system throughput. Back when PC processors were
slow enough for the comparison to be possible (and I was running System V
Unix), it was easily worth as much as a 30mHz increment in processor speed.
Today the corresponding figure would be higher.

What Processor Should I Buy?

We just got through with a lengthy explanation of why processor speed isn't
that important. But nobody is going to buy a 386/25 (or even 386/50) at this
point; if nothing else, you want to get a newer motherboard so you can put this
week's flavor of RAM module on it. And who knows? Maybe you will end up
doing real-time 3D graphics or nuclear-explosion modeling or one of the
handful of applications that can really strain your processor.

So for all you processor-speed junkies out there who want to be able to wave
around megahertz figures like gearheads bragging abut the compression ratios
in their hot-rods, here's a simple rule:

• Do buy one or two levels lower than commercial state of the art.

As of December 1996, if you look at a typical clone-maker's advertisement,
you'll see that the top three systems are a Pentium Pro, a Pentium 166 and a
Pentium 133. The rule of thumb tells us to skip the Pentium Pro, consider the
Pentium 166, and look seriously at the 133.

Why? Because of the way manufacturers' price-performance curves are shaped.
The top-of-line system is generally boob bait for corporate executives and other
people with more money than sense. Chances are the system design is new
and untried—if you're at the wrong point in the technology cycle, the chip may
even be a pre-production sample, or an early production step with
undiscovered bugs, like the infamous Pentium FDIV problem. You don't need
such troubles. Better to go with a chip/motherboard combination that's been
out for a while and is well known. It's not like you need the extra speed, after
all.

Besides, if you buy one of these gold-plated systems, you're only going to kick
yourself three months later when the price plunges by 30%. Further down the
product line there's been more real competition, and the manufacturer's
margins are already squeezed. There's less room for prices to fall, so you won't
watch your new toy lose street value so fast. Its price will still drop, but it won't
plummet sickeningly.

Again, bear in mind that the cheapest processor you can buy new today is
plenty fast enough for Linux. So if dropping back to a Pentium 90 or 75 will
bring you in under budget, you can do it with no regrets.

One Disk or Two?

At December 1996 prices, there's really no reason to consider buying less than
a 1-gigabyte disk. This is a convenient size, because “install everything” on most
Linux distributions will lay out more than 540MB, but less than 1GB of stuff.

If you can afford 2GB, the natural thing to think about is buying a 2GB disk
instead. But personally, I like a configuration with two 1GB disks better—one
“system” disk and one “home” disk. There are several good reasons for this kind
of setup. Most of them come down to the fact that you are quite a bit less likely
to trash two disks at once than you are to trash a single one.

A lot of us do Linux upgrades every three months or so. Wouldn't it give you a
warm, comforting feeling during your next one to be able to dismount your
“home” disk in advance and know that there's no way the upgrade can possibly
step on your personal files?

Or let's suppose you have a fatal disk crash. If you have only one disk, goodbye
Charlie. If you have two, maybe the crashed one was your system disk, in which
case you can buy another and mess around with a new Linux installation
knowing your personal files are safe (see above). Or maybe it was your home
disk; in that case, you can still run and do recovery stuff and basic Net
communications until you can buy another home disk and restore it from
backups (you did keep backups, right?).

You can even tune your disk configuration for performance this way. SCSI
controllers can interleave requests to different disks, so your swapper and
other system daemons will be able to use scratch files on the system disk at the
same time your applications are using files on the home disk. Thus, you may
find you actually get faster throughput with two smaller disks than one big one.

To get the most leverage from this effect, choose your system disk for access
speed and your home disk for capacity. In December 96 I would ideally choose
a 1GB fast system disk and a 2GB home disk.

Monitor And Video

First, buy your monitor. We won't go into detail about this here because the
issues aren't at all specific to Linux—you can find good guidance in any DOS-
related buyer's guide. There's not a whole lot of price variance among
functionally equivalent monitors, since it's a mature commodity technology, so
the basic question is, “how many square inches of screen can you afford?”

This is one of the areas where pinching pennies is not a good idea. You're going
to be looking at your monitor for hours on end, and using the screen real estate

constantly. Buy the best quality, largest screen you possibly can—it will be
worth it. I personally shelled out $2,000 for a 21-inch monitor in January 1996.
Though I have no regular income and this represented a significant portion of
my bank account, I have never regretted it.

The reasons not to pinch pennies are also reasons why you should actually see
the monitor you're contemplating before you buy it. A factory flaw like serious
edge mis-convergence or a tilted yoke is not a happy thing to discover just after
you've cut a check.

You may want to consider looking for a repaired or reconditioned monitor with
a warranty. These are often as good as new and much cheaper.

Next, buy your card. The major issue here is matching the card to the capacity
of your monitor—you don't want to pay for more card than your screen can
use, and you don't want to buy too cheap a card and find it can't drive your
monitor at its maximum capability.

So once you've specified your monitor, find a video card with a maximum video
bandwidth equal to or just slightly higher than the monitor's. That way you
know your video system is properly balanced with a minimum of wasted
capacity.

There is a fair amount of price variance among equivalent video cards, so shop
aggressively here. If you're on a budget, one easy thing to trade away is bit
depth. Manufacturers like to include 16- and 24-bit “photographic” color as
sizzle in their advertisements, but unless you're doing something like specialty
photocomposition work or medical graphics, you'll never use more than 256. So
you can settle for 8-bit color.

The days when XFree86 seriously constrained your choice of video card are
long past. Just about anything you can buy in a clone system should work fine
these days. If you're in doubt about whether the card is supported, surf over to
http://www.xfree86.org/ and check out their compatibility list.

Easier Choices

Now we've got a good handle on the most important choices, disks, bus,
processor and video. The rest is easier, and less dependent on the peculiarities
of Linux.

Next in importance is your CD-ROM drive, since you'll almost certainly be
installing Linux from it. You have a SCSI system, so get a SCSI CD-ROM. That's
pretty much the end of spec, as SCSI CD-ROMs are a very generic item. The only

significant difference among drivers is their speed—6x, 8x, 10x or up. It's hard
to find 2x or 4x speeds anymore.

Again, bear in mind that you probably don't need the latest and greatest. High-
speed CD-ROMS are really designed for people playing CD-ROM games or other
applications involving image and sound archives. If you're doing the Linux
thing, chances are you'll primarily use CD-ROMs that are code archives. Your
average transfer size will be small and an apparent speed of 6x or even 4x is
quite satisfactory. So here's a place to cut costs by buying well behind the
leading edge.

Next, consider a backup device. This is another place where spending extra
money pays. Cheap tape drives are unreliable, noisy and have agonizingly slow
transfer speeds. It's no fun to listen to what sounds like a blender dicing celery
for twenty minutes while your disk is backed up, so with the cheap drives you'll
quickly find you're backing up less often than you really should.

The worst are the QIC mini-cartridge drives, including the new Travan
technology. They're also the cheapest, and thus, exactly what clone makers
tend to bundle and salespeople tend to push. Avoid them. Quarter-inch QIC
drives are less nasty, mainly because they have higher transfer speed and get
done quicker; also they're usually engineered better for reliability. But you
really want to pay for a DAT or DLT drive.

Of course, buy 16MB of memory, unless you really like a text-only console—X is
not comfortable when memory is tight. Having lots of free memory will also
improve your virtual-memory performance. Fortunately, with RAM as cheap as
it is now this is unlikely to bust your budget.

You'll also want a three-button serial mouse. I happen to like the three-button
Logitech MouseMan and its kin—just the thing for a hacker's chronically
cluttered desktop. Your mileage may vary.

You'll want a modem, of course. 28.8 is recommended for speediest possible
net surfing. “How to Buy a Modem” could be an article in itself; we won't try to
cover it here.

The rest is basically frills and freebies. You can get a sound card if you like,
though under Linux you're not likely to use it for anything but playing Doom.
Every system sold today has the requisite two floppy drives and two serial ports
and one parallel port.

That about does it for basic hardware. Later on we'll look at some actual system
configurations.

Some Pitfalls To Avoid.

Don't buy jumperless peripheral cards, whether of the newer variety called
“Plug'n'Play” or the older kind that requires a DOS utility to poke registers in the
card at bootup time. These will cause you no end of grief. Plug'n'Play isn't yet
supported under Linux as I write, and it would be totally nasty to have to boot
DOS first every time you want to run Linux. A lot of these cards don't even hold
their settings across a warm boot.

You need to be extra-vigilant about this when buying. The tiny, reptilian brains
of most computer salespeople cannot seem to encompass the existence of
clone-box OSs other than DOS or Windows. They think boot-time setup utilities
are just fine and jumperless cards are the best things since sliced bread,
because they are easier to set up and a whole fifty cents cheaper. So they'll
push jumperless cards at you with glee and abandon. Foil them, or you'll suffer
for it later.

Don't buy so-called “WinModems” or anything that advertises “RPI” or “Rockwell
Peripheral Interface” on the box. These are ways for manufacturers to save a
few bucks on firmware at your expense; they won't work without driver
software that runs only under Windows.

Don't get stuck with a 2-button mouse. Specifying a three-button model is an
easy detail to overlook when filling out your order.

How To Buy

When I originally launched the Buyer's Guide years ago, the major distribution
channels for PCs were business-oriented storefront dealerships and mail order.
The dealerships had, and still have, high overheads and higher prices.
Accordingly, I recommended mail order.

I still like mail order, especially for techies on a tight budget. Publications like
Computer Shopper and their web site at http://www.netbuyer.com/, are a great
way to get a feel for prices, and these days most mail-order outfits with enough
cash to advertise on glossy paper are good risks. The online version of my
Buyer's Guide (see the URL at the top of this article) has details on how to
protect yourself when buying through the mail.

These days, though, I'm also a fan of computer superstores—outfits like
CompUSA and Circuit City that sell hundreds of machines a day out of
warehouse-sized premises packed to the ceiling with discounted hardware.
These obviously have more overhead than mail-order outfits, but their price
premium over mail-order is small. They make back a lot of their margin on

computer games and small accessories like mouse pads, cables and floppy
disks.

So, if you shop carefully and don't fall for one of their name-brand “prestige”
systems, you can get prices comparable to mail order with the comfort of
knowing there's a trouble desk you can drive back to in a pinch. Also, you can

see your monitor before you buy.

When To Buy

In a market where prices are dropping fast, it's always tempting to wait just
another month or two to buy your hardware, because you know it will then be
less expensive.

A good way to cope with this problem is to configure your system on paper, get
a couple of initial estimates, then set a target price, below the lowest one, at
what you're willing to pay. Then watch and wait. When the configuration cost
hits your target price, place your order.

The advantage of this method is that it requires you to settle in your mind, well
in advance, what you're willing to pay for what you're getting. That way, you'll
buy at the earliest time you should, and won't stress out too much afterwards
as it depreciates.

The Recipe File

Let's look at some sample components, keeping in mind the guidelines we've
developed. All prices are from the December 1996 Computer Shopper or their
web site at http://www.netbuyer.com/. Check this site out—its search facilities
are pretty good. Prices and vendors have been selected to represent what's
generally available out there.

• A: P55TV PCI with Pentium 166 and AHA 2940 SCSI on board: $740 from
Treasure Chest Peripherals.

• B: Same P55TV with Pentium 133: $520
• C: Same P55TV with Pentium 100: $420
• D: Same P55TV with Pentium 75: $380
• E: 2 16MB 4x32 SIMMs: $208 from Memory Etc.
• F: Seagate 1050MB Hawk 2XL: $350 from Insight Direct.
• G: Seagate 2149MB Hawk 2XL: $480 from Insight Direct.
• H: “Jumbo” Mid-Tower case + power supply: $40 from Sam's Computers.
• I: 6x SCSI CD-ROM from MicroXperts: $160

• J: Hitachi CM1587 15" 1024x768 color monitor: $375 from Automated
Tech Tools, Inc.

• K: ASTVision 7L 17" 1280x1024 color monitor: $400 from Tredex
• L: Trident Microsystems 9440 1MB PCI SVGA (1024x768): $31 from Hi-Tech

USA
• M: Cirrus Logic CL-GD54M30 1MB PCI 1280x1024: $39 from MicroXperts
• N: Dalco 1.44 floppy: $43.50 from Dalco Electronics
• O: Dalco 1.2 floppy: $58.50 from Dalco Electronics
• P: Seagate MS4000R-SB (4GB SCSI internal DAT): $300 from Global

Computer Supplies
• Q: Americomp 3-button mouse: $5 from Americomp

Now let's put these together into sample system configurations.

First, the deluxe system (A+E+F+G+H+I+K+M+N+O+P+Q): $2,824. That's pretty
far off our $2,000 target, but now let's strip away as much as we can.

If we drop the 1.2MB floppy (you'll never use it), the secondary disk, and then
downgrade to a 15" monitor with 1024x768 resolution, and drop back to a
Pentium 75 (D+E+F+H+I+J+L+N+O+P+Q), suddenly the price is just $1,892.50.

Now, when you reflect that vendors of desktop systems buy in volume and get
the parts up to 40% cheaper than you can even by mail-order, you can see that
coming in under $1500 with a Pentium-75 system shouldn't really be difficult at
all.

Even without a system vendor's volume discount, moving back up to a Pentium
100 (C+E+F+H+I+J+L+N+O+P+Q) makes our price $1932.50, still below our
$2000 target. The parts list above is just intended as an example—it wouldn't
actually be a good idea to build your box by separately assembling pieces like
that. It's better and usually cheaper to go through a system vendor.

There are several advantages to using a system vendor. One is the vendor's
ability to buy in volume and carve its margins mainly out of the volume
discount it gets from parts suppliers. This is especially important for big-ticket
items like the motherboard and disks. Another is expert assembly. A third is the
pre-shipment burn-in. And then, of course, there's the warranty—a very
reassuring thing to have in case your brand-new machine succumbs in spite of
that burn-in.

Once you've designed your configuration, you should get quotes from two or
three different system vendors. Any vendor who can't generate quotes for a

custom configuration, or resists giving a quote without a buy commitment, is
not worth your time—find another.

Questions To Ask Your Vendor

The weakest guarantee you should settle for should include:

• 72-hour burn-in to avoid sudden death Also, try to find out if they do a
power-cycling test and how many repeats they do; this stresses the
hardware much more than steady burn-in.

• 30-day money-back guarantee. Watch out for fine print that weakens this
with a re-stocking fee or limits it with exclusions.

• 1 year parts and labor guarantee (some vendors give 2 years).
• 1 year of 800 number tech support (many vendors give lifetime support).

Additionally, many vendors offer a year of on-site service free. You should find
out who they contract the service to. Also, be sure the free service coverage
area includes your site; some unscrupulous vendors weasel their way out with
“some locations pay extra,” which translates roughly as “through the nose if
you're further away than our parking lot.”

If you're buying from a dealership or superstore, find out what they'll guarantee
beyond the above. If the answer is “nothing”, go somewhere else.

Ask your potential suppliers what kind and volume of documentation they
supply with your hardware. You should get, at minimum, operations manuals
for the motherboard and each card or peripheral. Skimpiness in this area is a
valuable clue that they may be using no-name parts from Upper Baluchistan,
which is not necessarily a red flag in itself, but should prompt you to ask more
questions.

There are various cost-cutting tactics a vendor can use which bring down the
system's overall quality. Here are some good questions to ask:

• Is the memory zero-wait-state? One or more wait states allows the vendor
to use slower and cheaper memory, but will slow down your actual
memory subsystem throughput. This is a particularly important question
for the cache memory.

• If you're buying a factory-configured system, does it have FCC
certification? While it's not necessarily the case that a non-certified system
is going to spew a lot of radio-frequency interference, certification is
legally required—and becoming more important as clock frequencies
climb. Lack of that FCC sticker may indicate a fly-by-night vendor, or at
least one in danger of being raided and shut down.

• Are the internal cable connectors keyed, so they can't be put in upside
down? This doesn't matter if you'll never, ever ever need to upgrade or
service your system. Otherwise, it's pretty important. Vendors who fluff
this detail may be quietly cutting other corners.

After You Take Delivery

Your configuration is custom and involves slightly unusual hardware. Therefore,
keep a copy of the configuration you wrote down, and check it against both the
invoice and the actual delivered hardware. If there is a problem, calling your
vendor back right away will maximize your chances of getting the matter settled
quickly.

Then install your Linux and have fun.

Eric S. Raymond has been interested in Unix since 1973, on the Internet since
1976, among the leading Emacs hackers since 1983, and maintainer of the
Jargon File since 1990. He is listed as a Linux core developer. When not hacking,
he is likely to be found reading science fiction, playing jazz flute, or practicing
telepathy with his girlfriend's cat. His web page is at http://www.ccil.org/~esr.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Thread-Specific Data and Signal Handling in Multi-

Threaded Applications

Martin McCarthy

Issue #36, April 1997

Here are the answers to questions about signal handling and taking care of
global data when writing multi-threaded programs.

Perhaps the two most common questions I'm asked about multi-threaded
programming (after “what is multi-threaded programming?” and “why would
you want to do it?”) concern how to handle signals, and how to handle cases
where two concurrent threads use a common function that makes use of global
data, and yet the two threads need thread-specific data from that function. By
definition, global data includes static local variables which are in truth a kind of
global variable. In this article I'll explain how these questions can be dealt with
in C programs using one of the POSIX (or almost POSIX) multi-threading
packages available for Linux. I live in hope of the day when the most common
question I'm asked about multi-threaded programming is, “Can we give you lots
of money to write this simple multi-threaded application, please?” Hey—I can
dream, can't I?

All the examples in this article make use of POSIX compliant functionality. To
the best of my knowledge at the time I write this, there are no fully POSIX-
compliant multi-threading libraries available for Linux. Which of the available
libraries is best is something of a subjective issue. I use Xavier Leroy's
LinuxThreads package, and the code fragments and examples were tested
using version 0.5 of this library. This package can be obtained from http://
pauillac.inria.fr/~xleroy/linuxthreads. Christopher Provenzano has a good user-
level library, although the signal handling doesn't yet match the spec, and there
were still a number of serious bugs the last time I used it. (These bugs, I believe,
are being worked on.) Other library implementations are also available.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Information on these and other packages can be found in the
comp.programming.threads newsgroup and (to give a less than exhaustive list):

• http://www.mit.edu:8001/people/proven/pthreads.html
• http://www.aa.net/~mtp/PCthreads.html
• ftp://ftp.cs.fsu.edu/pub/PART/PTHREADS

Thread-specific data

As I implied above, I use the term “global data” for any data which persists
beyond normal scoping rules, such as static local variables. Given a piece of
code like:

void foo(void)
{
 static int i = 1;
 printf("%d\n", i);
 i = 2;
}

the first call to this function will print the value 1, and all subsequent calls will
print the value 2, because the variable i and its value persist from one
invocation of the function to the next, rather than disappearing in a puff of
smoke as a “normal” local variable would. This, at least as far as POSIX threads
are concerned, is global data.

It is commonly said (I've said it myself) that using global data is a bad practice.
Whether or not this is true, it is only a rule of thumb. Certainly there are
situations where using global data can avoid creating artificial circumstances.
The previous article (Linux Journal Issue 34) explained how threads can share
global data with careful use of mutual exclusion (mutex) functions to prevent
one thread from accessing an item of global data while another thread is
changing its value. In this article I will look at a different type of problem, using
a real example from a recent project of mine.

Consider the case of a virtual reality system where a client makes several
network socket connections to a server. Different types and priorities of data go
down different sockets. High priority data, such as information about objects
immediately in the field of view of the client, is sent down one socket. Lower
priority data such as texture information, background sounds, or information
about objects which are out of the current field of view, is sent down another
socket to be processed whenever the client has available time. The server could
create a collection of new threads every time a new client connects to the
server, designating one thread for each of the sockets to be used to talk to each
of the clients. Every one of these threads could use the same function to send a
lump of data (not a technical term) to the client. The data to be sent details of
the client it is to be sent to, the priority and type of data to be sent could all be

held in global variables, and yet each thread will make use of different values.
So how do we do it?

As a trivial example, suppose the only global data which our lump-sending
function needs to use is an integer that indicates the priority of the data. In a
non-threaded version, we might have a global integer called priority used as in
Listing 1.

In the multi-threaded version we don't have a global integer, instead we have a
global key to the integer. It is through the key that the data can be accessed by
means of a number of functions:

1. pthread_key_create() to prepare the key for use
2. pthread_setspecific() to set a value to thread-specific data
3. pthread_getspecific() to retrieve the current value

pthread_key_create() is called once, generally before any of the threads which
are going to use the key have been created. pthread_getspecific() and
pthread_setspecific() never return an error if the key that is used as an
argument has not been created. The result of using them on a key which has
not been created is undefined. Something will happen, but it could vary from
system to system, and it can't be caught simply by using good error handling.
This is an excellent source of bugs for the unwary. So our multi-threaded
version might look like Listing 2.

There are a few things to note here:

1. The implementation of POSIX threads can limit the number of keys a
process may use. The standard states that this number must be at least
128. The number available in any implementation can be found by looking
at the macro PTHREAD_KEYS_MAX. According to this macro, LinuxThreads
currently allows 128 keys.

2. The function pthread_key_delete() can be used to dispose of keys that are
no longer needed. Keys, like all “normal” data items, vanish when the
process exits, so why bother deleting them? Think of key handling as
being similar to file handling. An unsophisticated program need not close
any files that it has opened, as they will be automatically closed when the
program exits. But since there is a limit to the number of files a program
can have open at one time, the best policy is to close files not currently
being used so that the limit is not exceeded. This policy also works well for
key handling, as you may be limited in the number of thread-specific data
keys a process may have.

3. pthread_getspecific() and pthread_setspecific() access thread-specific data
as void* pointers. This ability can be used directly (as in Listing 2), if the

https://secure2.linuxjournal.com/ljarchive/LJ/036/2121l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2121l2.html

data item to be accessed can be cast as type void*, e.g., an int in most, but
not necessarily all, implementations. However, if you want your code to be
portable or if you need to access larger data objects, then each thread
must allocate sufficient memory for the data object, and store the pointer
to the object in the thread-specific data rather than storing the data itself.

4. If you allocate some memory (using the standard function malloc(), for
instance) for your thread-specific data, and the thread exits at some point,
what happens to the allocated memory? Nothing happens, so it leaks, and
this is bad. This is the situation where the extra parameter in the
pthread_key_create() function comes into use. This parameter allows you
to specify a function to call when a thread exits, and you use that function
to free up any memory that has been allocated. To prevent a waste of
CPU time, this destructor function is called only in the case where a thread
has made use of that particular key. There's little point in tidying up for a
thread that has nothing to be tidied. When a thread exits because it called
one of the functions exit(), _exit() or abort(), the destructor function is not
called. Also, note that pthread_key_delete() does not cause any
destructors to be called, that using a key that has been deleted doesn't
have a defined behavior, and that pthread_getspecific() and
pthread_setspecific() don't return any error indications. Tidy up your keys
carefully. One day you'll be glad you did. So a better version of our code is
Listing 3.

Some of this code might look a little strange at first sight. Using
pthread_getspecific() to store a thread specific value? The idea is to get the
memory location this thread is to use, and then the thread specific value is
stored there.

Even if global data is anathema to you, you might still have good use for thread-
specific data. In particular, you might need to write a multi-threaded version of
some existing library code that is also going to be used in a non-threaded
program. A good simple example is making a version of the standard C libraries
fit for use by multi-threaded programs. That friend of all C programmers, errno,
is a global variable that is commonly set by library functions to indicate what
went wrong during a function call. If two threads call functions which both set
errno to different values, at least one of the threads is going to get the wrong
information. This is solved by having thread-specific data areas for errno, rather
than one global variable used by all threads.

Signal Handling

Many people find signal handling in C to be a bit tricky at the best of times.
Multi-threaded applications need a little extra care when it comes to signal
handling, but once you've written two programs, you'll wonder what all the fuss
was about—trust me. And if you start to panic, remember—deep, slow breaths.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2121l3.html

A quick re-cap of what signals are. Signals are the system's way of informing a
process about various events. There are two types of signals, synchronous and
asynchronous.

Synchronous signals are a result of a program action. Two examples are:

1. SIGFPE, floating-point exception, is returned when the program tries to do
some illegal mathematical operation such as dividing by zero.

2. SIGSEGV, segmentation violation, is returned when the program tries to
access an area of memory outside the area it can legally access.

Asynchronous signals are independent of the program. For example, the signal
sent when the user gives the kill command.

In non-threaded applications there are three usual ways of handling signals:

1. Pretend they don't exist, perhaps the most common policy, and quite
adequate for lots of simple programs—at least until you want your
program to be reliable and useful.

2. Use signal() to set up a signal handler—nice and simple, but not very
robust.

3. Use the POSIX signal handling functions such as sigaction() and
sigprocmask() to set up a signal handler or to ignore certain signals—the
“proper” method.

If you choose the first option, then signals will have some default behavior.
Typically, this default behavior will cause the program to exit or cause the
program to ignore the signal, depending on what the signal is. The latter two
options allow you to change the default behavior for each signal type—ignore
the signal, cause the program to exit or invoke a signal-handling function to
allow your program to perform some special processing. Avoid the use of the
old-style signal() function. Whether you're writing threaded or non-threaded
applications, the extra complications of the POSIX-style functions are worth the
effort. Note that the behavior of sigprocmask(), which sets a signal mask for a
process, is undefined in a multi-threaded program. There is a new function,
pthread_sigmask(), that is used in much the same way as sigprocmask(), but it
sets the signal mask only for the current thread. Also, a new thread inherits the
signal mask of the thread that created it; so a signal mask can effectively be set
for an entire process by calling pthread_sigmask() before any threads are
created.

In a multi-threaded application, there is always the question of which thread
the signal will actually be delivered to. Or does it get delivered to all the
threads?

To answer the last question first, no. If one signal is generated, one signal is
delivered, so any single signal will only be delivered to a single thread.

So which thread will get the signal? If it is a synchronous signal, the signal is
delivered to the thread that generated it. Synchronous signals are commonly
managed by having an appropriate signal handler set up in each thread to
handle any that aren't masked. If it is an asynchronous signal, it could go to any
of the threads that haven't masked out that signal using sigprocmask(). This
makes life even more complicated. For instance, suppose your signal handler
must access a global variable. This is normally handled quite happily by using
mutex, as follows:

void signal_handler(int sig)
{
 ...
 pthread_mutex_lock(&mutex1);
 ...
 pthread_mutex_unlock(&mutex1);
 ...
}

Looks fine at first sight. However, what if the thread that was interrupted by the
signal had just itself locked mutex1? The signal_handler() function will block,
and will wait for the mutex to be unlocked. And the thread that is currently
holding the mutex will not restart, and so will not be able to release the mutex
until the signal handler exits. A nice deadly embrace.

So a common way of handling asynchronous signals in a multi-threaded
program is to mask signals in all the threads, and then create a separate thread
(or threads) whose sole purpose is to catch signals and handle them. The
signal-handler thread catches signals by calling the function sigwait() with
details of the signals it wishes to wait for. To give a simple example of how this
might be done, take a look at Listing 4.

As mentioned earlier, a thread inherits its signal mask from the thread which
creates it. The main() function sets the signal mask to block all signals, so all
threads created after this point will have all signals blocked, including the
signal-handling thread. Strange as it may seem at first sight, this is exactly what
we want. The signal-handling thread expects signal information to be provided
by the sigwait() function, not directly by the operating system. sigwait() will
unmask the set of signals that are given to it, and then will block until one of
those signals occurs.

Also, you might think that this program will deadlock, if a signal is raised while
the main thread holds the mutex sig_mutex. After all, the signal handler tries to
grab that same mutex, and it will block until that mutex comes free. However,
the main thread is ignoring signals, so there is nothing to prevent another
thread from gaining control while the signal handling thread is blocked. In this

https://secure2.linuxjournal.com/ljarchive/LJ/036/2121l4.html

case, sig_handler() hasn't caught a signal in the usual, non-threaded sense.
Instead it has asked the operating system to tell it when a signal has been
raised. The operating system has performed this function, and so the signal
handling thread becomes just another running thread.

Differences in Signal Handling between POSIX Threads and LinuxThreads

Listing 4 shows how to deal with signals in a multi-threading environment that
handles threads in a POSIX compliant way.

Personally, I like the kernel-level package “LinuxThreads” that makes use of
Linux 2.0's clone() system call to create new threads. At some point in the
future, the clone() call may implement the CLONE_PID flag which would allow all
the threads to share a process ID. Until then each thread created using
“LinuxThreads” (or any other packages which chooses to use clone() to create
threads) will have its own unique process ID. As such, there is no concept of
sending a signal to “the process.” If one thread calls sigwait() and all other
threads block signals, only those signals which are specifically sent to the
sigwait()-ing thread will be processed. Depending on your application, this
could mean that you have no choice other than to include an asynchronous
signal handler in each of the threads.

Summary

Thread specific data is easy to use—far easier than many people's first
experiences may suggest. In a way, this ease of use is a disadvantage, since
very often there are more elegant solutions to a problem. But in times of need,
thread specific data is your friend.

On the other hand, signal handling in anger can be a little hairy. Anyone who
thinks otherwise has overlooked something—either that or they're far too
clever for their own good. Make life easier for yourself by consigning all the
handling of asynchronous signals to one thread that sits on sigwait().

Martin McCarthy discovered multi-threaded programming while writing the
server for a high-speed, multi-user, distributed, virtual-reality system. Of
course, he only took that job so that he could squeeze as many buzzwords into
his job description as possible. He can be reached at
marty@ehabitat.demon.co.uk.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Creating Animations with POV-Ray

Andy Vaught

Issue #36, April 1997

This article is an introduction to animation using Persistence of Vision ray
tracing to create a mailbox that doesn't just sit there.

Silicon Graphics workstations come with a mail notification program called
“mailbox”, that informs the window system user if any mail awaits. Instead of
displaying a simple bitmap like the xbiff program, mailbox draws a real-looking
mailbox with a red flag which smoothly rises when it detects new mail. When
the user clicks the mouse in the window, the door of the mailbox opens to
reveal either empty space or waiting letters. In the latter case, the user's
favorite mail program is run.

In this article, I will trace part of the development of a free version of mailbox—
building and animating the mailbox. Since SGI workstations contain special
graphics-processing chips, the images generated by mailbox are calculated on
the fly. On lesser endowed machines, the solution is to generate and store the
frames beforehand and simply write them sequentially to the screen. Other
examples of similar animations can be found in most of the more popular
browsers as well as many web pages.

The natural tool to use is a ray tracing program. While using a paint program
will certainly do the job, it would take quite a bit of work to produce smooth
animation as well as consistent sizes of the various objects in what is really a
very simple scene. The Persistence Of Vision (POV) ray tracing program is one
of the oldest free ray tracers around. Its development parallels that of Linux in
that it has also been written by a large, unpaid and widely scattered
development team.

Ray tracing gets its name from the method it uses to construct an image. For
each pixel in the image, a line is calculated in space back along the path of light
to see where the light composing that pixel came from, and from there what
color it must be. If the ray being traced backwards intersects, say, a mirror

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

surface, then another ray is traced to see where the reflected ray came from. If
a ray comes from a solid object, then another calculation is done to see how
that spot is illuminated by the surrounding light sources.

From this simple description, one can see that ray tracing involves many
mathematical operations for each pixel being rendered. Math coprocessors
found on 486DX systems and beyond will increase performance by a factor of
about thirty. As distributed, POV comes with X and SVGALIB versions. One of
the great advantages of running POV under Linux as opposed to one of the
other operating systems (DOS, Windows or Macintosh) is the ability to do
something else while waiting for the finished image. When running POV under
XFree86, start your server in a 16-bit color mode using the command:

startx -- -bpp 16

You won't regret it. If you are running another program that uses lots of colors,
8-bit mode will end up looking really bad.

POV produces an image by interpreting a simple programming language. Since
its only purpose is to define various properties of objects and lights, there are
no subroutines, loops or if-tests. While the sparseness of the POV language
may seem restrictive, it has the effect of keeping the design of the program
focused on ray tracing rather than its extension language. A wide variety of
third-party programs exist whose ultimate output is a POV-readable text file.

This article describes POV version 3.0, which although still in beta test as of this
writing, has nifty features that make simple things much easier to do as well as
providing more support for animation. POV 2 came with a good tutorial that
has gotten better in 3.0, which now even comes with an HTML version. Rather
than try to top the POV tutorial, I will simply present the source code used to
construct the mailbox animations.

Running POV

Running POV without arguments produces on-line help on standard error—130
lines of it, so a pipe to less is needed. All POV's arguments can be specified in a
file called povray.ini. Command-line arguments override this initialization file. A
“+” before an argument turns that option on, “-” turns it off. The most
frequently used arguments are D, which displays the image as it is being
rendered; P, which pauses when the image is done; and +Ifilename, which
causes filename to be interpreted by POV. POV can output files in PPM, PNG
and its own Targa format. These formats are common enough to allow
conversion to other formats.

Making an Animation

POV works by interpreting a text file supplied by the user. The file describes the
positions and sizes of objects, what their surfaces look like and where the lights
and the camera are positioned. The structure of the language is a keyword
followed by modifiers enclosed in curly braces. Some keywords require specific
modifiers, while others don't require any. Sometimes a modifier will have
modifiers of its own, also enclosed in curly braces ({ }).

The amount of planning needed to build an image is directly related to its
complexity. Complex images should be built in the same manner as a complex
program—by first getting a broad outline to work, and then filling in the details.
In our case, the mailbox is fairly simple. We define the z direction to be height
above the ground, which is at z=0. The post the mailbox rests on will be located
at x=0 and y=0 to make things easy. See Figure 1 for a simple plan of the
mailbox.

Figure 1. Mailbox Plan

The first part of the mailbox program has the following lines:

#include "colors.inc"
#include "shapes.inc"
#include "textures.inc"
declare POST_WIDTH = 1.5
declare POST_HEIGHT = 10.0
declare MB_WIDTH = 3.0
declare MB_LENGTH = 6.0
declare MB_HEIGHT = 3.0

If you program in C, you know that the #include followed by a filename causes
that file to be inserted in lieu of the #include. POV comes with many include
files that provide predefined things. In this case, we're loading color definitions

https://secure2.linuxjournal.com/ljarchive/LJ/036/1307f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1307f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1307f1.large.jpg

with symbolic names that are easy to use. We include the shapes file, because it
contains the definition for the cylinder we need for the top of the mailbox, and
the texture file, which allows us to specify the surface appearance.

The include files are mainly composed of comments and declare directives,
which attach a symbolic name to a POV construct. The only thing we're using
them for at the moment is to define a couple of constants that give the
dimensions of our mailbox in POV's three-dimensional space. This makes
changing the dimensions of the mailbox very easy to do. Later, we'll declare the
sides and ends of the mailbox, so that we can reuse them easily.

We define the lights and camera next:

light_source { <10.0, 0.0, 25.0> color White }
light_source { <0.0, 0.0, POST_HEIGHT+0.95*MB_HEIGHT> Gray50 }
camera {
 location <7.0, 7.0, 13.0>
 sky z
 look_at <0.0, 0.0, POST_HEIGHT+MB_HEIGHT/2>
}

In our image, we have two lights. The first one is well above the mailbox and off
to one side, the same side as the camera is positioned. The light_source

keyword is followed by the position and color of the light. The second light is
actually inside the mailbox, near the top. Since the only other light doesn't
shine into the interior of the box, the interior ends up being a black cave unless
we put a light there. Since we want a very small light, we choose the color
Gray50 which is halfway (50%) between black and white.

The two main parameters that specify the camera are its location and its point
of view. In our case, the camera is at about the same height as the box and off
at an angle, so that we can see an end and a side at the same time. The sky

keyword specifies which direction is up, i.e., at the top of the image. By default,
POV assumes the y-direction is up. The z here is actually a shorthand way of
specifying the vector <0,0,1>—you can define any direction as up.

Now that lights and camera have been defined, we can start putting things into
our little world:

background { color SkyBlue }
plane {
 z,0
 color Green
}

The background keyword is used to specify what color is generated if a light ray
does not end up intersecting any object at all. We define this to be a color
named SkyBlue. POV is capable of generating much more complicated
backgrounds with varying shades of blue, clouds and fog effects.

The plane keyword specifies an infinite plane—in our case, the ground. The
orientation of a plane can be specified by what is called its normal vector. A
normal is the direction sticking straight out of the plane, which for this picture
is the z direction. The second parameter is a single number that specifies how
far from the origin (the point <0,0,0>) the plane is. Since the ground is at z=0,
this parameter is zero.

Building from the ground up, the first object is a wooden post:

box {
 < -POST_WIDTH/2.0, -POST_WIDTH/2.0, 0.0 >,
 < POST_WIDTH/2.0, POST_WIDTH/2.0, POST_HEIGHT >
 pigment { DMFWood4 }
}

A box is specified by two positions of two opposite corners. The box is always
lined up with the x, y and z axes—to get other orientations, the box must be
rotated. To get the wood surface, we specify a predefined pigment found in the
textures.inc file. The color of a surface is technically part of a pigment which
includes more information about the surface, but POV lets us omit the pigment

keyword when just specifying a color.

Now that we've reached the mailbox itself, we shift the plane a bit to make
things easier. Instead of building the mailbox on top of the post
(z=POST_HEIGHT), we'll build the mailbox on the ground (z=0), and move the
completed box on top of the post later.

declare mb_side = polygon { 5,
 < 0.0, -MB_LENGTH/2.0, 0.0 >,
 < 0.0, MB_LENGTH/2.0, 0.0 >,
 < 0.0, MB_LENGTH/2.0, MB_HEIGHT/2.0 >,
 < 0.0, -MB_LENGTH/2.0, MB_HEIGHT/2.0 >,
 < 0.0, -MB_LENGTH/2.0, 0.0 >
}
declare mb_bottom = polygon { 5,
 < -MB_WIDTH/2.0, -MB_LENGTH/2.0, 0.0 >,
 < MB_WIDTH/2.0, -MB_LENGTH/2.0, 0.0 >,
 < MB_WIDTH/2.0, MB_LENGTH/2.0, 0.0 >,
 < -MB_WIDTH/2.0, MB_LENGTH/2.0, 0.0 >,
 < -MB_WIDTH/2.0, -MB_LENGTH/2.0, 0.0 >
}

As we mentioned earlier, we're declaring the pieces with the intention of
putting them together later. Polygon is a Greek word meaning “many sides”.
The first number tells POV how many points in space specify the polygon. For
some reason, POV requires that the first point equal the last point. If it doesn't,
POV will close the polygon automatically and issue a warning.

The discerning reader will notice we've left out a pigment/color specification. It
will be added at the end, so that all of the sides get the same pigment and we
don't have to retype the same specification.

Now that we've done some simple shapes, we can do some more complicated
things, like the ends of the mailbox:

declare mb_end = union {
polygon { 5,
 < -MB_WIDTH/2.0, 0.0, 0.0 >,
 < MB_WIDTH/2.0, 0.0, 0.0 >,
 < MB_WIDTH/2.0, 0.0, MB_HEIGHT/2.0 >,
 < -MB_WIDTH/2.0, 0.0, MB_HEIGHT/2.0 >,
 < -MB_WIDTH/2.0, 0.0, 0.0 >
}
disc {
 < 0.0, 0.0, MB_HEIGHT/2.0 >, y, MB_HEIGHT/2.0
}
}

A POV union is a collection of one or more objects bound together into a single
object. In the case of the mailbox ends, we have a rectangle and a disc that
overlap each other. The position of the disc is specified by the location of its
center. The orientation is determined by its normal vector (think of it as the
direction of an axis). The last parameter is the radius of the disc. Since they
overlap perfectly, the disc and rectangle come together seamlessly.

The most complicated object to build is the half-cylinder that forms the top of
the mailbox:

declare mb_top = intersection {
 box {
 < -2,-1, 0 >
 < 2, 1, 2 >
 pigment { color red 1.0 green 1.0 blue 1.0
 filter 1.0 }
 }
 Cylinder_Y
 scale <MB_WIDTH/2.0, MB_LENGTH/2.0, MB_WIDTH/2.0>
}

An intersection works similarly to a union, except the final result consists of a
surface that is common to all elements of the section. If we'd said intersection

instead of union for the mailbox ends, we would have ended up with a half-
disc. In the current problem, we want half of a cylinder.

Cylinder_Y is actually defined in the shapes.inc in terms of the POV quadric

primitive. The result is an infinite cylinder of radius 1.0 along the y-axis. We
chop this off by intersecting the cylinder with a box. This works except for one
final detail—the result is a solid half-cylinder as opposed to the outer surface.
The opaque flat surfaces come from our bounding box.

The solution to this problem is possible only on a computer—we make the box
invisible by giving it a special color. Instead of a predefined color name
following the color keyword, we specify the amount of red, blue and green to
use. The last keyword, filter, reverses the whole interpretation of the color so
that instead of reflecting light, the surface passes light. If we were to change the
command to color red 1.0 filter 1.0, we would end up with a surface that

passed only red light. Since our color has the maximum values of red, green
and blue, all light is passed.

When the final scene is rendered with the door open, a careful inspection
reveals that the result is slightly less than perfect. If you're looking for it, the
end of the cylinder is darker than the lower part. The reason for this is a
tradeoff POV makes between speed and accuracy.

Recall that a pixel's color is calculated by bouncing a ray around from the
viewer until it hits a light source. Inside the box, lots of bouncing is going on
and at some point POV has to give up on hitting a source, since each bounce
reduces the amount of light being transmitted. The problem is that our invisible
surface is still counted as a surface and POV gives up too soon. This is remedied
by setting the max_trace_level global variable higher. The optimum value can
be determined by setting a very high value, then looking at the statistics printed
by POV at the end of the run. In the current scene, a maximum of 16 bounces
were needed, so we set it to 20 with the following line:

global_settings { max_trace_level 20 }

After the complicated half-cylinder, the flag of the mailbox seems trivial by
comparison. The dimensions of the various parts of the flag are also in Figure 2.

Figure 2. Mailbox Flag

declare STAFF_HEIGHT = 3.0
declare STAFF_WIDTH = 0.30
declare FLAG_HEIGHT = 1.0
declare FLAG_WIDTH = 1.5
declare mb_flag = polygon { 7,
 < 0.0, 0.0, 0.0 >,
 < 0.0, -STAFF_HEIGHT, 0.0 >,
 < 0.0, -STAFF_HEIGHT, -FLAG_WIDTH+STAFF_WIDTH >,
 < 0.0, -STAFF_HEIGHT+FLAG_HEIGHT,
 -FLAG_WIDTH+STAFF_WIDTH >,
 < 0.0, -STAFF_HEIGHT+FLAG_HEIGHT, -STAFF_WIDTH >,
 < 0.0, 0.0, -STAFF_WIDTH >,
 < 0.0, 0.0, 0.0 >
 pigment { color Red }
 finish { ambient 0.85 }
}

The mailbox flag has a different finish than the rest of the mailbox, so we
specify it here. The finish determines how light bounces off of the surface in

question. In particular, the ambient parameter specifies how much of the
ambient light to reflect to the camera. Ambient light is a global parameter that
defaults to white light. The 0.85 specifies “lots”, so we end up with a fluorescent
red flag that glows even when all other lights are turned off.

The last little piece of the mailbox is a sign on top giving the address.

declare sign = union {
text { ttf "timrom.ttf" "Andy" 0.05, 0.0
 pigment { Red }
 finish {
 ambient 0.5
 diffuse 0.5
 }
 translate <0.32, 0.175, 0.0>
}
polygon { 5,
 < 0.0, 0.0, 0.0 >,
 < 3.0, 0.0, 0.0 >,
 < 3.0, 1.0, 0.0 >,
 < 0.0, 1.0, 0.0 >,
 < 0.0, 0.0, 0.0 >
 pigment { White }
}
}

Again, we build the sign on the ground and move it into position later. The main
reason for this is that text objects are rendered at a fixed place, which is flat on
our ground (z=0). Before POV 3.0, text had to be laboriously constructed from a
union of polygons. POV 3.0 is capable of reading and displaying Adobe
TrueType fonts. Most letters are about one unit high and about half a unit wide.
Since POV's world is a three-dimensional world, text objects have a thickness,
which we've set to 0.05. This is big enough that the letters stick out from the
background rectangle, yet small enough that the thickness is not obvious. The
last parameter we've set to zero is a number that specifies an offset between
each character beyond the usual spacing.

The downside of text objects is that centering and figuring out how large the
text should be is a matter of trial and error. The translate keyword modifies an
object by moving it in a particular direction, in this case to the center of the
following rectangle.

Finally, we put the whole mailbox together. We place everything in a union so
that we can translate the whole structure to the top of the post:

union {
 object { mb_bottom }
 object {
 mb_side translate < -MB_WIDTH/2.0, 0.0, 0.0>
 }
 object {
 mb_side translate < MB_WIDTH/2.0, 0.0, 0.0>
 }
 object {
 mb_end
 translate < 0.0, -0.5*MB_LENGTH, 0.0 >
 }

 object {
 mb_end
 rotate < -90.0*clock, 0.0, 0.0 >
 translate < 0.0, 0.475*MB_LENGTH, 0.0 >
 }

The first part of the union puts the bottom, sides and ends together. The only
new thing in this section is the rotate keyword which rotates the front end of
the mailbox. The vector after the rotate keyword gives the rotation angle in
degrees about the x, y and z axes. The clock variable is a number between zero
and one that is used when a multiple-frame animation is being rendered.
Instead of rendering a single frame, the number of frames to be drawn is given
on the command line, and the variable clock is zero for the first frame and one
for the last. The result is a series of images with the door smoothly rotating
open. For a single frame, clock is set to zero.

object {
 mb_top
 translate < 0.0, 0.0, MB_HEIGHT/2.0 >
 }
 object {
 sign
 scale 0.9
 rotate <90, 0, -90>
 translate <0, 1.5, MB_HEIGHT>
 }
 object {
 mb_flag
 rotate <-90*clock, 0.0, 0.0>
 translate < 0.01+MB_WIDTH/2.0, MB_LENGTH/2.95,
 MB_HEIGHT/2.25 >
 }
 texture {
 pigment { color Silver }
 normal { bumps 0.1 scale 0.01 }
 finish {
 ambient 0.2
 brilliance 6.0
 reflection 0.5
 }
 }
 translate < 0.0, 0.0, POST_HEIGHT>
}

The last section places the mailbox's top, sign and flag into place. The final
texture keyword is used to give a texture to all the surfaces that don't have one
yet—surfaces that already have textures are unaffected. The brilliance
parameter controls how light reflects from the surface as a function of the
angle at which it strikes the surface. Higher values make the surface appear
more metallic, which is what we want. The reflection keyword causes reflection
to occur, with 1.0 being a mirror surface and 0.0 being a black non-reflective
surface.

Of course, the last thing to do is actually run POV to render the images.
Running POV in animation mode involves adding a command-line switch +KFFn
where n is the number of frames to produce. The output filenames are
appended with 01, 02, etc., corresponding to the frame number. For long
animations, subsets of the entire sequence can easily be done.

Although the real project isn't done yet, it helps to view the output as it really
might be seen. Taking the easy way out, a short Tcl/Tk script is provided (Listing
1) that will display a simple animation forward and backward at a mouse click.
Being interpreted, it isn't fast, but it was quick to write and it works. An
alternative to this script is to use the GIFMerge program to merge separate GIF
images into a single GIF that can be displayed by one of the major web
browsers or by XAmin. POV does not write GIF files, but many converters are
available.

Figure 3: Finished Mailbox

Figure 4: Exploded View of Mailbox

More Information

A wealth of information exists on POV-Ray. The best place to start is the POV
web site, http://www.povray.org/. Although the site has recently been

https://secure2.linuxjournal.com/ljarchive/LJ/036/1307l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/1307l1.html

downsized, follow the link to the back issues of POVZINE, a webzine devoted to
POV. A POV CD-ROM is available, as well as several books on ray tracing, some
specific to POV. GIFMerge has a really neat home page (containing compiled
binaries) at http://www.iis.ee.ethz.ch/~kiwi/GIFMerge/.

Andy Vaught is currently a PhD candidate in computational physics at Arizona
State University, and has been running Linux since 1.1. He enjoys flying with the
Civil Air Patrol as well as skiing. He can be reached at andy@maxwell.la.asu.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The /proc File System And ProcMeter

Andrew M. Bishop

Issue #36, April 1997

You may rely on your electronic Rolodex to organize your life, but Linux uses
the /proc file system.

The /proc file system is a part of Linux that most people have not investigated
deeply—perhaps may have never heard of. Like the kernel itself, it is a vital part
of a Linux system. Yet its contents and its function are a mystery to most users.
If the kernel is the brain of the operating system then the /proc file system is its
personal organizer.

In this article I will describe the /proc file system—what it is, and how it can be
used. There is also a description of the program ProcMeter that uses the /proc
file system to display useful information.

What Is the /proc File System?

First of all, the /proc file system is not a real file system; it is a virtual file system
without the physical presence that a disk or a tape has. The most common file
system you use is the collection of files on the disk. The disk stores the data
without regard to meaning, and the file system (e.g., the Linux ext2fs system)
makes sense of the data. The file system organizes the data as directories and
files for the user. Another common file system is the Network File System (NFS),
which makes files on remote computers accessible.

All file systems are managed by the Linux kernel, which maps the data on the
device into a usable form. The user-level programs that access the file system
do not need to know how or where the data is actually stored. When a program
reads from a file, the kernel manipulates the appropriate device to obtain the
data. When a program accesses one of the /proc files there is no device;
instead, the kernel supplies the information from its internal state. The files
exist only while there is a program actually looking at them.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The /proc file system is a feature which Linux inherited from one of its Unix
ancestors. There are two main dialects of Unix in popular usage: System V and
BSD. The history of these two are not important here, except that System V
contains a /proc and BSD does not.

What Is in This File System?

Everything that is happening in Linux. Every single program that is running, the
entire contents of memory, the internal workings of the kernel—all the
processes currently running on the system are contained in the /proc file
system. proc is an abbreviation for process.

The most interesting files in /proc are listed below. This list was compiled from
kernel version 1.2.13; other versions will be different. This is not a complete list,
but contains only those files whose contents are obvious to casual browsers. A
full description of the files can be read in the Linux kernel source code—a task
not for the faint-hearted.

The contents of /proc are completely dependent on the processor architecture.
(For example, the file /proc/cpuinfo is available only for ix86 processors.) The
different types of hardware with which the kernel must communicate can also
add files (e.g., /proc/pci on PCI bus computers). There are also files that are
present or not, depending on which kernel options are compiled. (My /proc/
modules is empty, because I did not compile in modules support.)

Some Common Files in /proc

• cpuinfo contains the information established by the kernel about the
processor at boot time, e.g., the type of processor, including variant and
features.

• kcore contains the entire RAM contents as seen by the kernel.
• loadavg contains the system load averages for the last 1, 5 and 15

minutes, along with the number of processes currently running and the
total number of processes.

• meminfo contains information about the memory usage, how much of
the available RAM and swap space are in use and how the kernel is using
them.

• stat contains system statistics, counts of the amount of usage the kernel
has made of basic system resources.

• uptime contains the amount of time in seconds that the system has been
running, and the amount of that time that it has been idle.

• version contains the kernel version information that lists the version
number, when it was compiled and who compiled it.

• net/ is a directory containing network information.
• net/dev contains a list of the network devices that are compiled into the

kernel. For each device there are statistics on the number of packets that
have been transmitted and received.

• net/route contains the routing table that is used for routing packets on
the network.

• net/snmp contains statistics on the higher levels of the network protocol.
• self/ contains information about the current process. The contents are the

same as those in the per-process information described below.

• pid/ contains information about process number pid. The kernel
maintains a directory containing process information for each process.

• pid/cmdline contains the command that was used to start the process
(using null characters to separate arguments).

• pid/cwd contains a link to the current working directory of the process.

• pid/environ contains a list of the environment variables that the process
has available.

• pid/exe contains a link to the program that is running in the process.

• pid/fd/ is a directory containing a link to each of the files that the process
has open.

• pid/mem contains the memory contents of the process.

• pid/stat contains process status information.

• pid/statm contains process memory usage information.

You can look at the contents of these files yourself. Just type:

cat /proc/meminfo

and you will see something like:

 total: used: free: shared: buffers:
Mem: 11423744 8753152 2670592 2670592 2764800
Swap: 25800704 5328896 20471808

This table shows you how much memory you have, the amount you are using
and how it is being used.

Of What Use Is All This Information?

Most people are using /proc without realizing it. The programs top, ps, free and
their friends all use /proc. The information that they provide is taken directly
from /proc and formatted for display.

Compare the contents of the /proc/meminfo file (above) with the command
free that gives output that looks like:

 total used free shared buffers
Mem: 11156 8680 2476 2724 2800
Swap: 25196 5204 19992

As you can see, this table is just a formatted version of the contents of /proc/
meminfo.

The output of the ps program is all available in /proc; all of the information is
stored in the per-process directories. Most of it just needs to be reasonably
formatted for the user.

What is ProcMeter?

ProcMeter is a program that monitors the information stored in /proc. The
information is displayed in a number of graphs. Each of these graphs shows
one aspect of the system. The program runs under X Windows on Linux only.

Anybody who has used xload, xmeter or perfmeter will recognize this
description. The difference is these programs use a system-independent
method of obtaining data, whereas ProcMeter was designed for Linux from the
start. When ProcMeter is using /proc, it is occupying minimal memory and
taking negligible CPU time. Once /proc is used, other ideas for obtaining data
spring to mind. Looking at the table of /proc above, we can see there is a lot of
useful information available.

What Can ProcMeter Tell Me?

The statistics available in ProcMeter can be divided naturally into a number of
classes.

1. Processes—Basic information about the system, how busy it is and how
heavily loaded it is. The processing power of the CPU is spread between
all of the running processes and the kernel, and is idle for the remaining
time.

cpu is the total percentage of the CPU being used.

cpu-
user

is the percentage of the CPU used by user processes.

cpu-
nice

is the percentage of the CPU used by nice (low priority)
processes.

cpu-sys is the percentage of the CPU used by the kernel.

1. Memory (Real and Virtual)--Memory is such a precious resource (especially
on small PCs for the home user) that it is important to keep track of it. The
beauty of the Unix system is that the use of virtual memory (swap space)
is transparent. Transparent, that is, until your computer makes a noise
like a coffee grinder, and programs start to crawl—this is a sure sign that
you are out of real memory and living in the virtual stuff.

1. Hardware—The hardware the operating system runs on is often a
bottleneck in performance. Every interrupt that is generated by hardware

cpu-idle is the percentage of the CPU unused (opposite of CPU).

load
is the system load, the number of running processes averaged

over the previous minute.

proc is the number of processes present on the system.

context
is the number of context switches between processes per

second.

mem-free is the amount of free RAM.

mem-used is the amount of used RAM.

mem-buff is the amount of RAM used for file buffers.

mem-
cache

is the amount of RAM used as cache memory (kernel version
2.0).

mem-
swap

is the amount of swap space on disk being used (the shortfall
in RAM).

swap
is the amount of swapping (the sum of swap-in and swap-

out).

swap-in
is the number of pages of memory swapped in from disk per

second.

swap-out
is the number of pages of memory swapped out to disk per

second.

must be processed by the kernel. The disk drive, another slow device,
must also be controlled.

1. Network—When running on a network, there can be a quite an impact on
system performance due to handling the traffic. Each packet that arrives
must be handled promptly, causing hardware interrupts and kernel CPU
usage.

How Can ProcMeter Help?

I have a ProcMeter window permanently open occupying the right-hand edge
of the screen. Most of the time it is just taking up space, but there are times
when it can be very useful.

page is the amount of paging (the sum of page-in and page-out).

page-in
is the number of pages of memory read in from disk per

second.

page-
out

is the number of pages of memory written out to disk per
second.

disk is the number of disk accesses per second.

intr is the number of interrupts (IRQs) per second.

lpkt is the number of packets on local interfaces (same machine).

fpkt is the total number of packets on fast network devices.

fpkt-rx is the number of received packets on fast network devices.

fpkt-tx is the number of transmitted packets on fast network devices.

spkt is the total number of packets on slow network devices.

spkt-rx is the number of received packets on slow network devices.

spkt-tx is the number of transmitted packets on slow network devices.

When getting files via FTP from the Internet, the amount of packets sent and
received can be monitored. When the packets stop coming, the transfer is
finished or stuck. This is a good time to ping the FTP site to see if the route is
still open.

Have you ever felt that the program you have just written is taking too long to
run? This could be a symptom of running out of RAM and using swap space. Try
looking at the mem-used, mem-free, mem-swap and swap graphs. A steeply
rising graph will indicate a memory leak.

Where to Get ProcMeter

The latest version of ProcMeter is version 2.1, available as source code by FTP
from sunsite.unc.edu. The file is called procmeter-2.1.tgz, and is in the directory
/pub/Linux/X11/xutils/status. Alternatively, if you have WWW access, the latest
information about ProcMeter is available on my home page at http://
www.gedanken.demon.co.uk/, along with links to other sources for the
program.

Figure 1

Figure 2

Andrew Bishop has been using Linux for 2 years. The original version of
ProcMeter was the first program he wrote using Linux. He programs mainly in
C, Perl and Emacs Lisp on Unix systems, often inventing his own version of the
wheel as he goes. He can be reached by e-mail at
ambi@gedanken.demon.co.uk.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/036/0177f1.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/0177f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Somebody Still Uses Assembly Language?

Richard Sevenich

Issue #36, April 1997

Assembly language is a wonderful tool for teaching about how computers
work. Professor Sevenich explains how it is used at WSU.

In the core program for our computer science curricula we offer two assembly
language courses as elements in that part of our sequence providing hardware
emphasis. Although the students do learn to program in this arcane language,
the emphasis is on using assembly language as a detective's tool to learn about
the underlying hardware.

Both courses involve the omnipresent Intel 80x86 architecture. However, the
first course treats the chip as an 8086/88 and works within the MS-DOS
environment. Insofar as is practical within the existing time constraints, we
pretend that MS-DOS is not present and try to simulate an embedded systems
environment. The essential fact is that MS-DOS puts us in charge of the system
resources, i.e., in real address mode. This first course is a prerequisite for our
subsequent hardware courses.

The focus of the second course is to examine the architecture elements that
support a multitasking, multiuser operating system. For this course we have
chosen Linux as the environment. This second course is a prerequisite for
subsequent hardware courses as well as for our operating systems sequence.
Linux is typically used in the latter. Of course, in such a sophisticated
multitasking, multiuser system we no longer have direct control over the
hardware resources. It is of central interest to see how the operating system
protects itself.

This article discusses the second course. The intended audience consists of
those who have an interest in the features of the 80x86 (x >= 3) Intel

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

architecture that support an operating system such as Linux. The two
techniques we use for investigating are as follows:

1. Write our own assembly language code to probe the architecture.
2. Examine assembly language written by others.

These two approaches are discussed in their respective sections later in this
article. This article is not an attempt to investigate the Intel architecture (a
subject for a large volume), but to describe the tools and resources available to
do so.

Virtually all textbooks on the Intel 80x86 architecture assume that the reader is
working in a Microsoft environment, usually with the Microsoft Assembler,
MASM. Because we are working in a Linux environment, we do not use such
traditional textbooks; instead we use as the primary resource the Intel486
Processor Family: Programmer's Reference Manual (1995), Intel Order Number
240486-003. This is a large manual and of special interest are Parts I and II
dealing with application and system programming, respectively. Other useful
resources are the on-line Kernel Hacker's Guide (see http://www.ssc.com/linux/
ldp.html), Brennan's Guide to Inline Assembly (see http://www.rt66.com/-
brennan/djgpp/djgpp_asm.html), and the various man pages and info
documents available within Linux itself. Using such a set of resources rather
than a focused textbook is, of course, typically how a real world software
engineer operates.

Why Use Linux? Which Distribution?

Linux is a natural choice for rather obvious reasons:

1. It is free.
2. It includes a complete set of development and detective tools.
3. The source code is available.
4. It is an evolving multitasking, multiuser environment making use of the

advanced features of the underlying chip architecture.

I recommend Debian GNU/Linux to our students because:

1. It is quite stable.
2. It can be updated/upgraded nondestructively, in place.
3. Various libraries are in the standard locations.
4. It is non-commercial, so students can get more seriously involved with

maintenance and development later in the curriculum.
5. The Debian users and developers are extremely responsive and helpful.

Other distributions such as Red Hat or Craftworks meet most of these
requirements quite well also, except for item 4, which is important for our
students, but perhaps not to others.

Writing Our Own Assembly Language Programs

We have found it convenient and productive to write our assembly language in-
line within C source code. Labels can be interjected in the source code at
appropriate places to provide breakpoints for the debugger. The primary
motivation for writing in-line assembly language is to examine architectural
features. The assembly language statements are AT&T style rather than Intel
style. The former seems to be the Unix custom.

As a simple example, we'll exhibit a short program, example1.c (see Listing 1),
whose purpose is to examine the flags register which has three types of flag
bits: status bits (e.g., the Carry Flag), system flags (e.g., the two bit combination
giving the I/O Privilege Level), and a control flag, the Direction Flag. The
program does the following:

1. Puts a copy of the flags register in the eax register for examination
(breakpoint bp1).

2. Flips all the bits in that copy (breakpoint bp2).
3. Attempts to write that bit-flipped copy into the flags register and then

puts a copy of the resulting flags register into eax for examination
(breakpoint bp3).

Note how in-line assembly language is supported by the asm macro.

To compile this into the executable program example1.x, containing necessary
information for subsequent use by the debugger, we use the -g switch in the
following command:

gcc -g example1.c -o example1.x

The next step is to invoke the debugger. It is convenient to also get a log of the
debugger activities via a pipe to the tee command so the command line entry
would be:

gdb -silent example1.x | tee example1.log

yielding the gdb prompt
(gdb)

Now gdb is ready to run example1.c, while tee will produce a record of our
activity in example1.log. The latter can be printed or examined with an editor.

https://secure2.linuxjournal.com/ljarchive/LJ/036/0173l1.html

It is beyond the scope of this article to also be a tutorial on the use of gdb; such
documentation is readily available in man page and info format. In addition, for
use within a browser, one can find, in html format, the FSF document
Debugging with gdb by Stallman and Pesch. One current URL for this is: http://
funnelweb.utcc.utk/~harp/gnu/tars.

It might be more efficient to first look at the terse, readable introduction to gdb
given in Getting to Know gdb by Loukides and Oram in Issue 29 of Linux Journal
(September 1996).

Having said that, let's at least show a typical example1.log (see Listing 2) which
shows setting breakpoints and then stopping at those breakpoints to examine
registers of interest. Lines starting with the (gdb) prompt are commands
entered by the user, whereas everything else is information volunteered by the
debugger.

The log file tells the following:

• The original value of the flags register was 0x246.
• `Our attempt to flip all the bits and write the flipped value back to the
flags register was only partially successful and that attempt generated an
exception (signal SIGTRAP).

The investigator might go through a questioning process rather like this:

• What does the original value of the flags register mean in terms of
individual bits (e.g., what is the I/O Privilege Level)?

• Which instruction generated an exception and why?
• Which bits could be flipped and which could not? Why?

Interesting facts are then uncovered. For example, in the log file shown, the ID
flag (bit 21) was successfully flipped. According to the Intel documentation this
indicates that this processor can execute the CPU_ID instruction. On the other
hand, the bits giving the I/O Privilege Level (bits 12 and 13) could not be
modified. Clearly, that is expected—the casual user should not be able to
change anything that might help get at the I/O hardware directly.

Examining Assembly Language as Written by Others

Typically, even for device drivers, Linux developers do not use assembly
language. Hence, it is particularly revealing to examine those very few parts of
the kernel which are written in assembly language. These can be found within
the Linux distributions with the command:

find -name *.S

https://secure2.linuxjournal.com/ljarchive/LJ/036/0173l2.html

entered from the root directory. Of particular interest are these:

• bootsect.S (Intel style instructions)
• setup.S (Intel style)
• head.S (AT&T style)

These are heavily commented, but additional guidance can be found in the Intel
documentation and in Alessandro Rubini's Tour of the Linux Kernel Source,
found in the Kernel Hacker's Guide. These modules do the first portions of
system initialization, a process which is completed by C routines. Once they
have been executed, the assembly language routines are done. Another
module of interest is entry.S (AT&T style) whose tasks are ongoing. In particular,
it contains low level routines for handling system calls and faults.

Conclusion

This material should help interested readers start their own investigations of
the Intel 80x86 (x >= 3) architecture and the Linux kernel. Much can then be
learned about such topics as operating modes, memory management, and
building the various descriptor tables.

Richard A. Sevenich is a Professor of Computer Science at Eastern Washington
University in Cheney, Washington. His original enthusiasm for Linux was
derived in part from the fact that its development had been driven by user
needs rather than by marketing hype. He can be reached at
rsevenich@ewu.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Applixware

Gary Moore

Issue #36, April 1997

If you install Applixware on your system, you'll notice an impact on system
resources.

• Product: Applixware 4.2 For Linux
• Publisher: Red Hat Software, Inc.
• Phone: 800 454-5502
• Fax: 203 454-2582
• WWW: http://www.redhat.com/
• Price: USD $495, student price USD $79.95
• Reviewer: Gary Moore

An Applixware On-Line Book

Applixware is is an excellent “office suite” that may open doors to wider use of
Linux.

Applix Words

Applixware features a word processor, a spreadsheet, a presentation graphics
tool, a drawing tool, an e-mail client, database connectivity and an object-
oriented application builder. For some time, this professional set of programs
has been available for other Unix platforms, including HP-UX, Solaris, AIX and
Digital Unix, and now Applixware is available for Intel-compatible Linux
machines and Microsoft Windows; at the time of this writing, the NT version is
out and the 95 version is in beta testing.

If you install Applixware on your system, you'll notice an impact on system
resources. A complete installation with the included Red Hat RPM files requires
210MB—if that's more than you have available, you can make a partial
installation from a live, “unpacked” directory on the CD-ROM. In fact,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f2.jpg

Applixware can be launched and used directly from the CD-ROM, though this
makes program operation a little leisurely. I was using Red Hat Linux 4.0 when I
reviewed Applixware, but the software should work fine on other distributions,
and installation instructions are included.

The CD speed may not seem bad if you're using a 486DX25, on which
Applixware is fast enough to be usable, but probably too slow for a production
environment; I found my meager CPU power to be a real problem only when I
started using the graphics tools.

This is not an application for low-memory systems. As cheap as RAM is today,
this shouldn't be too painful a state to rectify. With 16MB of RAM, the word
processor was snappy enough with X and the Afterstep window manager
running, but having much else loaded caused so much paging of virtual
memory I needed something to read while waiting.

Not much reading material comes with Applix—at least, not on paper. Back
when it was known as Asterix and also in version 3.x of Applix, there was a
manual for each module, but either with the Linux version or with the later
releases, virtually all documentation is in the “On-Line Books”. Use the on-line
tutorials if you're new to the system, or the on-line help if you just need a
reference.

Applix Graphics

Applix Words is a full-featured word processor with everything you'd expect to
find in a modern product. That is, unless you're looking to do something which
really should be done using desktop publishing software. By the way, one thing
you never want to do with it is embed, oh, 80 or so large, 256-color GIFs in a
single document—at somewhere around 8MB, application behavior gets a bit
wacky. Linking is much, much better.

Words gives you tables, borders, shading, embedded equations and
calculations, conditional text and cross-referencing, international dictionaries,
thesauri and a multi-font, multi-size WYSIWYG display. You can rely on multiple
undo and redo, and when you're done, you can save PostScript and PCL printer
files or send them directly to a networked printer.

HTML is easy with the Applix HTML authoring tool. Documents can be imported
from Applix or another popular word processor using one of the format filters
or created from scratch with the same ease as a word processing document.
Clip art, GIFs and linked or embedded Applix Graphics images are converted
seamlessly. Applix Spreadsheets documents and queries from the database

https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f3.jpg

interface application, Data, can be included, too. Tables, colors, and more than
25 standard HTML styles are all under your control.

Applix Builder

Applix Graphics is a terrific drawing and presentation graphics tool. At your
disposal are user-definable fill patterns, various brush styles, shearing, drop
shadows, incremental zoom, rotating, scaling, color pixel editing and text
wrapping, to name a few. Grid snap, guide lines, rulers, and coordinates help
create precise and complex drawings quickly. I found graphics as easy to
produce with Graphics as with Powerpoint.

The good news continues with Applix Spreadsheets with calculation-based
attributes, 3D charts, named views and dynamic links to objects in other
Applixware applications. When your linked data from elsewhere changes, it is
automatically updated in your spreadsheet. There are live links to a relational
database through Applix Data, goal seeking, drag-and-drop, projection tables
and background recalculation. You can import those old Lotus 1-2-3 and Excel
spreadsheets, too.

You might not think you need another mail client, but check out Applix Mail.
When you receive mail, a dialog box pops up with the sender name and subject,
giving you the options “Read Now”, “Read Later”, and “Help”. You can attach
Applix files to your mail messages and upon receipt, launch the appropriate
Applix tool for viewing. Mail can be marked “Urgent”, marked with a “Reply by”
date, and also sent by “certified” mail, giving you a receipt when the recipient
has read the mail. Of course you can “Cc” and “Bcc” people. You also get shared
mail folders, automatic conversion of messages and documents to your
preferences, encryption, and mail filtering based on rules you specify.

Applix Data connects Applixware applications to SQL databases like Informix,
Oracle, Ingres, and Sybase, seamlessly querying data from one or more tables,
selecting information with query conditions, and performing advanced queries
and joins. Rows can be edited, inserted, and deleted. A live link in your
document to the database means up-to-date data. Data provides a lot of
capability when teamed with ELF and Builder.

The Extension Language Facility (ELF) is an interpreted language with which
users can build and deploy applications, front-ends to applications, automate
tasks and connect to databases and other external sources of data. The Applix
user interfaces are built with ELF and ELF macros can be used to automate
tasks in any of the Applixware applications. Some capabilities include: TCP/IP
socket interfacing, remote procedure calls, interactive debugging, many built-in
macros, string manipulation, and arithmetic and Boolean operators.

https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/0202f4.jpg

Builder is object oriented and gives you access to external data sources as well
as the capabilities of the Applixware application suite for use in your custom
applications. Also, full access to ELF macros and functions, external objects,
shared classes, RPC and shared library support. Plus, the applications you
develop in Builder on one platform are portable to Applixware on other
platforms without modification.

Applixware is a terrific package. When I heard it was available for Linux, I knew I
could let go of Microsoft Office (and MS Windows) forever.

Gary Moore is the Editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Book Reviews: Active Java and Exploring Java

Danny Yee

Issue #36, April 1997

The book works its way through the elements of the language, explains how to
use the awt and net libraries, introduces the Java Development Kit and the
basics of writing applets and applications—and then concludes with a chapter
on Java internals.

• Title: Active Java: Object-Oriented Programming for the World Wide Web
• Author: Adam Freeman & Darrel Ince
• Publisher: Addison-Wesley

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Price: US$25.95
• ISBN: 0-201-40370-6
• Title: Exploring Java
• Author: Patrick Niemeyer & Joshua Peck
• Publisher: O'Reilly & Associates
• Price: US$24.95
• ISBN: 1-56592-184-4
• Reviewer: Danny Yee

Somewhat bemused by the marketing frenzy and in no particular hurry to learn
yet another programming language, I have refrained from asking for review
copies of any books on Java. Nevertheless, a few turned up on my doorstep
anyway, and I found it hard to resist finding out what all the fuss is about.

The first book to arrive, and the only one I read right through, was Active Java.
This is an introduction to Java aimed at those having basic programming
competence but no experience with an object-oriented language. The book
works its way through the elements of the language, explains how to use the
awt and net libraries, introduces the Java Development Kit and the basics of
writing applets and applications—and then concludes with a chapter on Java
internals. The emphasis is on covering important ideas and concepts rather
than on providing details. Active Java is easy to follow and clearly laid out, and I
recommend it for anyone wanting a broad overview of Java. I think it would also
make a good textbook for an undergraduate course, though it lacks exercises
and is perhaps not repetitive enough.

As a supplement to Active Java, and a source of more detailed information, I
used Exploring Java. This begins with a brief look at internals and security
issues and then launches into a basic “Hello Web!” applet. This book contains
detailed descriptions of the basic classes and standard libraries and is clearly
aimed at experienced programmers who want to learn Java in order to write
serious applications.

I have only glanced at the three other books on Java that arrived; Java in a
Nutshell (O'Reilly) looks like a reference for the serious Java programmer; On To
Java (Addison-Wesley) is a textbook with an unusual layout, using paragraphs
numbered sequentially throughout; and Learn Java on the Macintosh (Addison-
Wesley) comes with a Mac version of the Java Development Kit on CD-ROM.
Anyone looking for a book on Java should search carefully: as even this small
sample illustrates, there are books on Java for all sorts of niche markets. I
wouldn't be at all surprised to see titles like From Common Lisp To Java For
Amiga Users and 101 Implementations of Tetris In Java appearing!

Danny Yee received review copies of the books mentioned from Addison-
Wesley and O'Reilly & Associates, but has no stake, financial or otherwise, in
their success. He can be reached at danny@cs.su.oz.au.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Perl to Check Web Links

Jim Weirich

Issue #36, April 1997

Do you have many links on your web pages? If so, you're probably finding that
the pages at the ends of those links are disappearing faster than you can track
them. Ah, but now you can get the computer to handle that for you.

One of the first things I did when I got my first Internet account was put
together my own set of web pages. The one I get the most comments about is
called “Weirichs on the Web” where I link to other Weirichs I have found on the
Web. Although a lot of fun, keeping the links up to date can be very tedious. As
web pages that I reference are moved or deleted, links to them become stale.
Without constant checking, it is difficult to keep my links current.

So, I began to wonder, is there a way to automatically find the outdated links in
a web page? What I needed was a script that would scan all of my web pages
and report every bad HTML link along with the web page on which it was used.

There are several parts to this problem. Our script must be able to:

• fetch a web document from the Web
• extract a list of URLs from a web document
• test a URL to see if it is valid

The LWP Library

We could write code by hand to extract URLs and validate them, but there is a
much easier way. LWP is a Perl library (available from any CPAN archive site)
designed to make accessing the World Wide Web very easy in Perl. LWP uses
Perl objects to provide Web-related services to a client. Perl objects are a recent
addition to the Perl language and many people might not be familiar with them.

Perl objects are references to “things” that know what class they belong to.
These “things” are usually anonymous hashes but you don't need to know this

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

to use an object. Classes are packages that provide the methods the object
uses to implement its behavior. And finally, a method is a function (in the class
package) that expects an object reference (or sometimes a package name) as
its first argument.

If this sounds confusing, don't worry. Using objects is very easy. LWP defines a
class called HTTP::Request that represents a request to be sent on the Web.
The request to GET a document at URL http://w3.one.net/~jweirich can be
created with the statement:

$req = new HTTP::Request GET,
 'http://w3.one.net/~jweirich';

new creates a new Request object initialized with the GET and http://
w3.one.net/~jweirich parameters. This new object is assigned to the $req

variable.

Calling a member function of an object is equally straightforward. For example,
if you want to examine the URL for this request, you can invoke the url method
on this object.

print "The URL of this request is:
", $req->url, ",\n";

Notice that methods are invoked using the -> syntax. C++ programmers should
feel comfortable with this.

Getting a Document

All the knowledge about fetching a document across the Web is stored in a
UserAgent object. The UserAgent object knows how long to wait for responses,
how to handle errors, and what to do with the document when it arrives. It
does all the hard work—we just need to give it the right information so that it
can do its job.

use LWP::UserAgent;
use HTTP::Request;
$agent = new LWP::UserAgent;
$req = new HTTP::Request ('GET',
 'http://w3.one.net/~jweirich/');
$agent->request ($req, \&callback);

This snippet of Perl code creates a UserAgent and a Request object. The
Request method of UserAgent issues the request and calls a subroutine called
callback with a chunk of data from the arriving document. The callback

subroutine may be called many times until the complete document has been
received.

Parsing the Document

We could use regular expressions to parse the incoming document to
determine the location of all the links, but when you begin to consider that
HTML tags may be broken across several lines and all the little variations
involved, it becomes a more difficult task. Fortunately, there is an HTML parsing
object available in the LWP library, called HTML::LinkExtor, which extracts all the
links from an HTML document.

The parser is created and then fed pieces of the document until it reaches the
end of the document. Whenever the parser detects links buried in HTML tags, it
calls another callback subroutine that we provide. Here is an example that
extracts and prints all the links in a document.

use HTML::LinkExtor
$parser = new HTML::LinkExtor (\&LinkCallback);
$parser->parse ($chunk);
$parser->parse ($chunk);
$parser->parse ($chunk);
$parser->eof;
sub LinkCallback {
 my ($tag, %links) = @_;
 print join ("\n", values %links), "\n";
}

Putting It Together

We now have all the tools we need to build our checklinks script. We will define
two operations for URLs. When we scan a URL, we will fetch the document
(using a UserAgent) and scan it for internal HTML links. Every new link we find
will be added to a list of URLs to be checked.

Next, check a link to see if it points to a valid web document. We could try
retrieving the entire document to see if the document exists, but the HTTP
protocol defines a HEAD request that gets only the document's date, length and
a few other attributes. Since a HEAD request can be much faster than a full GET
for large documents, and since it tells us what we need to know, we will use the
head() function of the LWP::Simple package to check a URL. If head() returns an
undefined value, then the document specified by the URL cannot be fetched
and we add the URL to a list of bad URLs. If head() returns a list, the URL is valid
and it is added to the list of good URLs. Finally, if the valid URL points to a page
in our local web space and ends with “.html” or “.htm”, we add the URL to a list
of URLs to be scanned.

The scanning process produces more URLs to be checked. Checking these URLS
produces more URLs that need to be scanned. As URLs are checked, they are
moved to the good or bad list. Since we restrict scanning to URLs in our local
web space, eventually we will scan all local URLs that are reachable from our
starting document.

When there are no more URLs to be scanned and all URLs have been checked,
we can print the list of bad URLs and the list of files that contain them.

Results

The complete code to checklinks is found in Listing 1. You will need Perl 5 to be
able to run the checklinks routine. You will also need a recent copy of the LWP
library. When I installed LWP, I also had to update the IO and Net modules. You
can find Perl, and the LWP, IO and Net modules at http://www.perl.com/perl.

You can invoke checklinks on a single URL with the command:

checklinks url

If you wish to scan all local URLs reachable from the main URL, add a -r option.

Running checklinks on my home system against my entire set of web pages
took about 13 minutes to complete. Most of that time was spent waiting for the
bad URLs to timeout. It scanned 76 pages, checked 289 URLs, and found 31
links that were no longer valid. Now all I have to do is find the time to clean up
my web pages!

Jim Weirich is a software consultant for Compuware specializing in Unix and C+
+. When he is not working on his web pages, you can find him playing guitar,
playing with his kids, or playing with Linux. Comments are welcome at
jweirich@one.net or visit http://w3.one.net/~jweirich.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2026l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Creating a Multiple Choice Quiz System with CGI

Reuven M. Lerner

Issue #36, April 1997

Designing quizzes the easy way using CGI.

Over the last few months, we have looked at a number of techniques that CGI
programmers can use to work on their programs. This month, we will look at a
multiple-choice quiz system that uses a combination of techniques to create a
simple, but effective, system for creating quizzes for our users. By the end of
this short project, you will have not only a good idea of how to implement this
type of interaction, but a working four-question quiz, as well.

Before we can begin, we will need to decide on a file format which will contain
the questions and answers for our quiz. We could put all of the questions and
answers inside of the program itself, but moving them to one or more external
files will let us reuse the software with other quizzes on our system. Given that
this is a simple quiz, let's say that the questions and answers for each quiz are
stored in a file whose name is the same as the quiz name. Thus the quiz named
“presidents” will be stored in a file named “presidents”, while the quiz named
“unix” is stored in a file named “unix”.

Now that we have decided on filenames, we need to decide on a format for the
contents of the file. Let's take the easy route, and put one question and its
associated possible answers on each line in the file, each separated by tabs,
and ending with the letter “a”, “b”, “c” or “d”, that corresponds to the correct
answer.

So that the file can contain comments and whitespace, we'll say that any line
beginning with a hash mark (#) is considered a comment, to be ignored. The
same goes for any line consisting solely of whitespace. Allowing for comments
and whitespace makes it possible for us to comment out questions that we no
longer want to use, without having to delete them altogether.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Here is a sample quiz on the subject of cranberries, which we will put in a file
named, oddly enough, “cranberries”:

This is the quiz file about cranberries.

Comment lines contain a hash mark (#) in the
first column, and are ignored, as are lines
containing only whitespace.

What color are cranberries? Red White\
 Blue Dark green A
What can you make with cranberries? Muffins\
 Sauce Steak A and B D

Note that the questions and answers in this file can contain space characters,
but not tab characters. This will typically not affect things very much, but it is a
consideration to keep in mind. Also, while each line can be as long as needed,
the question and its associated answers must remain on a single line of text
(that is, must end in a carriage return).

Creating an Object

Our quiz program actually consists of two different programs working in
concert with each other. The first, askquestion.pl, produces an HTML form that
presents the user with a question and a list of possible answers. That form will
be submitted to another CGI program, checkanswer.pl, which determines
whether the user has selected the correct answer.

Because both of these CGI programs will have to access the same quiz file, it is
probably a good idea to centralize such functions in a single Perl 5 object. Such
an object would have to read the file and return a question of our choosing
from the list of available questions. To make things a bit more interesting, this
object should include a method that retrieves a random question from the file,
which makes the quiz less predictable for the user.

The object that we will use in our quiz program is shown in Listing 1. All this
code means is that you can place a:

use QuizQuestions;

statement near the top of both CGI programs to create a Perl object that reads
the questions to the “cranberries” quiz. To do this, you can use this statement:

my $quiz = new QuizQuestions("cranberries");

For example, you could retrieve the fifth question with:
my @question = $quiz->getQuestion(5);

or a random question with:

https://secure2.linuxjournal.com/ljarchive/LJ/036/2112l1.html

my @question = $quiz->getRandomQuestion;

As you can see, the QuizQuestion object in Listing 1 has nothing to do with CGI
programming per se. Even if we were creating a quiz system that wouldn't be
used on the Web, this object would be a good starting point. By using an object
to represent our data, we have also made it possible to change the file format
we are using without modifying the CGI programs that access the data. If we
were so inclined, we would be able to move the quiz data into an SQL table, and
access it via a database client from within Perl. As long as the interface to the
outside world remains the same, our CGI programs wouldn't care.

Asking the Right Questions

Now that we have created a fairly simple interface to the quiz data, let's create
the first of our two programs, askquestion.pl. This program produces an HTML
form which not only asks a question, but also lets the user choose an answer by
clicking on the appropriate radio button.

One possible version of the program, shown in Listing 2, is fairly
straightforward. It creates one instance of CGI, an object which helps us write
CGI programs, and one instance of QuizQuestions, the object we created
above. After instantiating these two objects, we then produce a simple HTML
form containing four radio buttons that correspond to each possible answer.
We then create a submit button and a reset button, and finish creating the
HTML form.

However, we also create a hidden field that contains the number of the
question the user is answering. This number is returned by the getQuestion

and getRandomQuestion methods within QuizQuestions. If you didn't
understand previously why we needed to return these values along with the
questions and answers, perhaps it will be clearer now. HTTP is a stateless
protocol—every request made to a server is independent of any other requests
made to it. The quiz requires at least two connections to the HTTP server—one
to get the question and produce a form with askquestion.pl, and a second to
submit the user's response and check the answer, checkanswer.pl.

The problem is that checkanswer.pl can verify only that the user's answer is
correct if it knows which question the user was asked. Since checkanswer.pl is
invoked with a separate request to the HTTP server it cannot know which
question was selected, unless we have some way of passing that message from
the invocation askquestion.pl.

We could have used the hidden field to pass the correct answer along to
checkanswer.pl, but this is a bad idea because hidden fields are hidden only
from obvious view. If a user were interested in finding the correct answer, he or

https://secure2.linuxjournal.com/ljarchive/LJ/036/2112l2.html

she would be able to look at the page's HTML source, which would quickly
reveal the answer. This way, users know only which question is being asked,
not which answer is correct.

Also note that the name of the quiz comes from the query string, which is
passed to us in the QUERY_STRING environment variable. This lets us, as
mentioned above, use the same quiz program for multiple programs. By
changing the value placed in the query string, you can turn this pair of
programs into many different quizzes, each with its own set of questions and
answers. When we set the action attribute in the <Form> tag, we make sure
that it includes not only the name of the program to which the form should be
submitted, checkanswer.pl, but also the name of the quiz, which appears in the
query string.

Ending the Suspense

As we saw earlier, the form generated by askquestion.pl is submitted to a
second CGI program, checkanswer.pl. Checkanswer.pl opens the list of
questions, retrieves the question that the user was asked by retrieving the
value of the questionNumber form element, which is hidden in the form, and
checks the user's answer against the correct one.

If the user answers the question correctly, the program displays a
“congratulations” headline along with the correct answer, and asks if the user
would like another question.

If the user answers the question incorrectly, the program displays the correct
answer, offers some consolation, and asks the user if he or she would like to
continue.

Now you can see why you need the getQuestion and the getRandomQuestion
method. With getQuestion alone, you can retrieve a question, but not a random
selection from the list of questions. But if you had only getRandomQuestion,
you would not be able to retrieve the question that the user had asked, and
thus would not be able to check the user's answer against the correct one.

The source code for checkanswer.pl is in Listing 3. One obvious flaw of this
implementation is that if the site administrator decides to modify the questions
file between the time the user receives the question and when he or she
submits the form, the question might be marked as wrong. That's because the
programs expect the order of the questions will not be modified between the
time the question is asked and when it is answered. If you were to insert a new
question at the top of the file, this would turn question 1 into question 2,
question 2 into question 3 and so on—which would mean that checkanswer.pl
would compare the user's answer with an answer to a different question.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2112l3.html

Note that we used Perl's eval function to get the actual text of the answer.
Perhaps this is simply a personal hang-up, but I hate it when I am told that I
answered incorrectly, but no one tells me what the correct answer was. We
could have stored the answers in an associative array, but I decided that it
would be interesting to use eval to get the value of a variable. In this case, we
concatenate the string “$answer” and the value of $rightAnswer, giving us one
of the four possible strings “$answerA”, “$answerB”, “$answerC” or “$answerD”.
eval is handed that string and returns the value of the variable named in the
string.

The Initial HTML

Now that we have defined QuizQuestions, askquestion.pl and checkanswer.pl,
all that remains is to create an HTML file that acts as the initial entrance into
the quiz.

<HTML>
<Head>
<Title>Play our quiz!</Title>
</Head>
<Body>
<H1>Play our quiz!</H1>
<P>You can play our cranberry quiz by clicking

here.</P>
</Body>
</HTML>

Notice that the URL leading to the initial question must have a quiz name
appended to it in the query string. Other than that, though, this is a simple
HTML document.

This quiz appears to work pretty well so far, although there are certainly
features that you might add—such as a scoreboard, better error-checking when
reading the quiz file, or a system that ensures that users don't see the same
question twice.

But more important than any of these is the fact that while the format of the
question file is easy for programmers to understand, non-programmers who
would like to add, delete or modify questions might find the format confusing.
Next month we will work on making this system more author-friendly, so that
non-programmers can modify entries in the question file via an HTML form.

Reuven M. Lerner has been playing with the Web since early 1993, when it
seemed more like a fun toy than the World's Next Great Medium. He currently
works as a independent Internet and Web consultant from his apartment in
Haifa, Israel. When not working on the Web or volunteering in informal
educational programs, he enjoys reading on just about any subject, but
particularly politics and philosophy, cooking, solving crossword puzzles and

hiking. You can reach him at reuven@the-tech.mit.edu or
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #36, April 1997

Readers sound off.

The Global Perspective

I'm glad to extend my subscription because Linux Journal is a very nice Linux-
related magazine providing me with the global perspective of the Linux world
which cannot be easily obtained by searching the Web, Usenet, and the like. I
am always grateful for your efforts and hope LJ will continue to help me as it
did in the past year of my subscription.Sohn, Jung-woo Aerospace Engineering
Department Seoul National University, Korea. sylph@plaza.snu.ac.kr

Is Java a Threat?

First, I would like to thank everyone at SSC for publishing Linux Journal. I
eagerly wait for it to arrive at my door each month. I have been using Linux for
a few years now and currently develope applications and utilities for Linux
using Motif and, more recently, Java.

The concern I have for Linux is the ever-growing use of Java as a programming
language of choice. I am not saying using Java to deploy applications on Linux is
a bad thing, and I am not putting down the Java programming language (I use it
regularly, and enjoy it). It just takes away some of the developer support for
Linux-specific applications, which Linux needs. If applications are written in Java
and run on Linux or any other operating system for that matter are we just
turning our beloved operating systems into another Sun JavaStation or Oracle
NC? Running Java-based applications on Linux is fine, but is Linux then losing
the free and commercial application base that it needs to bring Linux to the
next step? The next step being broad-based commercial Linux applications, that
could be purchased at your local computer store or out of a general PC
magazine. As many of us know, having a high number of applications available
for an operating system attracts more people to it.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

On the other hand, Linux has been a Java trail-blazer. Linux can incorporate
Java binary support into its kernel. Creating applications in Java has its upside—
applications which have been developed on a Microsoft platform can be easily
run on the Linux operating system. Because of this, Linux could become a
major platform in small- and medium-sized businesses that need both a rock
solid operating system to run their operation and to be able to run all of the big
name brand software. The Java language could actually increase the Linux-
installed base around the world. If users of other operating systems become
tired of software upgrade costs, downloading bug fixes and paying huge per
minute costs to telephone support companies, maybe Linux will become the
logical decision. Stover Babcock stover@pit-stop.com

The history of personal computers seems to have many examples of systems
clutched too tightly by their creators, missing out on opportunities to broaden
appeal and usage. Making Linux Java-capable does not change the essential
nature of Linux: free and open.

Multithreaded Programming Library

In my article on multithreaded programming [“What is Multi-Threading?”, Issue
34], I completely failed to mention where to obtain the library I make use of in
the programs that go with the article. The library I use came from http://
pauillac.inria.fr/~xleroy/linuxthreads and is very good, and less than 100K to
download. Cheers, Martin McCarthy marty@ehabitat.demon.co.uk

Finding a Users' Group

I just received my first issue of Linux Journal in the mail today. I must say that it
is refreshing to know that there is a journal dedicated to Linux.

I live and play in Biloxi, Mississippi, an area not often thought of in positive,
humanistic ways. But time and imported people have brought this area from
gloom to glimmer. Technology has finally arrived in the deep south, sparked
from casual conversations on a campus computer system, to a full blown ISP
using Linux, of course. My Linux box is connected to the Internet via their
service. Okay, so we have technology here, and we have people to utilize it. I
know there is a small and quiet group of people out there who use Linux also.
The gist of this letter is I would like to form a Linux users' group here, so the
quiet group can join together and spread the wealth of knowledge out there
with each other. For only by becoming a community of friends and associates,
can we continue to grow and nurture our Love for Linux.Thank You Ted F. Fox
tfox@gooner.datasync.com

This is a good opportunity to mention GLUE—Groups of Linux Users
Everywhere. SSC, publishers of Linux Journal have established GLUE to give

users groups visibility, special deals on SSC products, and other services to help
groups grow. See the home page (http://www.ssc.com/glue/) for details.

In Stores Now!

Greetings! I am writing in response to Cory Plock's letter to the Editor in the
February 1997 issue of Linux Journal about not finding Linux distributions in
stores.

I have been able to find Slackware and Red Hat in the major software stores in
Houston for some time now, and I can even go into a few major book stores
and not only find lots of books on Linux with their bundled distributions, but I
have even found Red Hat 4.0 and Applixware on the shelf! I guess Linux has
caught on earlier in some parts of the country than others. (At the first ever
Houston Linux Users Group organizational meeting, we had over 150 people
show up!) Don Harper Pencom Systems Incorporated duck@pencom.com

That's good news!

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux—The Internet Appliance?

Phil Hughes

Issue #36, April 1997

There has been talk about $500 appliances for connecting to the Internet. Were
those people talking about Linux?

As the Internet grows it becomes a source for more and more useful but non-
technical information. For example, the U.S. Postal Service has a web page that
is very useful to anyone who wants to mail something. The Internet is also
rapidly becoming the most cost-effective way to transfer information, since it
offers much cheaper delivery than methods such as FAX machines.

It is in the best interest of companies using the Internet to distribute
information for everyone to get on the Internet, so as to eliminate a duplicate
channel for distributing information. While this won't happen overnight, some
of them will be willing to help make it happen.

To this end, a $350 appliance that connects to your television has just been
announced. However, it requires a TV, offers poor resolution and the input
device is a glorified TV remote control. It could be used for some basic Internet
access, but it isn't a serious approach to real Internet access.

What I want to do is encourage the Linux activists out there to think about
proposing Linux as an important part of the solution. Linux is already a
significant player on the web server end of the picture. Why not use Linux to
build this “appliance” as well?

What Is Needed?

Before Linux can be the solution, we need to define the problem. From what I
have read, this appliance is a low-cost computer system that can connect to the
Internet, along with the necessary software to send and receive electronic mail
and browse the Web. If you have been seriously working with Linux, you

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

probably think Linux already does this. Well, it does. That is, it does this job for
you, but it is far from an appliance.

Think of a VCR—that's an appliance. You buy it, take it home, plug it into a
couple of things, set the time and stations in your area, and you are up and
running. Figure about 30 minutes to get it out of its box, connected and
running.

Now, remember, lots of people think a VCR is too complicated. If you talk to
VCR owners, you will probably find that quite a few have the time blinking
12:00, and that many don't know how to program their VCR to record a
program at a time when they will be away from the TV.

Now that I have defined the average user, you should have a better idea of
what is needed. In particular, something that is easier to set up than a VCR that
will allow Internet access.

Can This Be Done?

Yes. And, with Linux? Yes again. In fact, it is more likely that it can be done with
Linux than with other systems, because you have the source code to work with.
And, as Linux is frugal with resources, it can be done with less investment in
hardware.

Finally, if you do this, will it sell? Again, I feel the answer is yes. While many
people need (or think they need) a computer system and will go for a low-end
Mac or PC with MS Windows, there are many more people—millions—who
don't want a computer, but do want access to information. Chances are that
many of these people will later discover that they do want a word processor, a
way to FAX and other computer-related tasks. If the cost of entry for the
appliance is lower than a computer, lots of people will start with the appliance.
With proper design, this appliance could also grow up into the other tasks
while, of course, still running Linux.

How Do We Build It?

The key to success is to create something with high-functionality and a
minimum cost. A basic 486 or 5x86 system with 16MB RAM and almost any disk
should do it. It is probably worth including a CD-ROM drive in the package—2x
units can be found for around $30 and this can really simplify things. Checking
out the local computer shopper magazine proves that I could easily assemble
these systems for $800 by buying everything at retail. And over $200 of this is
the price of a monitor. I think this basic system could be produced for $500 in
quantity—possibly less.

Now, this computer isn't good for much unless we can convert it from a
general-purpose computer to an appliance that anyone can use. While not
particularly hard, doing it correctly is the secret. Here are some considerations
that help turn it into an appliance:

• Make it initially boot and load from CD.
• Use XDM so there is always a graphics screen.
• Have some built-in logins like mom and dad.
• Include support for all reasonable connectivity options including ISDN.
• Use diald so connections happen automatically.
• Cut a deal with some ISPs and have default connect files for them.
• On initial load, the system should ask for connection information. The

questions should, whenever possible, be multiple choice.
• Include an automatic backup script for the configuration files.
• Include a decent web browser. Maybe Netscape would finally support

Linux if this was done right.
• Build a web page where the users can get help/more information, and

include this as the default location for the browser.

I think that will get things off to a good start. If a bunch of readers decide to
give this a try, great. I think we could all learn from the experiences of others.
Then, possibly, hardware manufacturers will realize there really is an
opportunity for selling appliances here.

This Is Called Win-Win

There is a real chance for a serious win-win situation here. If all goes according
to plan, there will be millions of new Linux boxes out there in the world,
millions of people will get Internet access at a lower cost than they would have
otherwise, some hardware manufacturers will make money, and some money
will end up in the hands of people who worked on the software. For the long-
term, these millions of new Linux users will soon want to buy that word
processor, spreadsheet and personal information manager. Everybody wins.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Usenix/Uselinux in Anaheim

Phil Hughes

Issue #36, April 1997

For those not familiar with Usenix, it has been the “wear a tie and get laughed
at” Unix show for years.

Here I am at Usenix at the Mariott Hotel in Anaheim. Actually, it is pleasant to
be in nice weather after almost drowning in Seattle. It had rained here the day
before so the air was actually clean. But, let me talk about the show instead of
the weather.

Usenix is a five-day show that, this year, has a heavy Linux presence. For those
not familiar with Usenix, it has been the “wear a tie and get laughed at” Unix
show for years. It is technical and tends to draw a very seriously technical
crowd.

It is broken up into tutorials, a trade show and a technical conference. Well,
plus the informal beer drinking sessions and such.

Tutorial Days

The first two days are tutorials and I elected to attend an all-day tutorial on the
Linux 2.0 kernel presented by Stephen Tweedie. I found it to be excellent and
that seemed to be the general opinion of the approximately 125 people who
attended.

In eight hours and 170 overheads, Stephen addressed four specific areas of the
kernel: memory management, the scheduler, filesystems and I/O and
networking. I feel the goal of the talk, “to be with the design and algorithms
behind the Linux kernel and to be able to read the Linux source code with
some understanding” was met. While Stephen did not necessarily expect
attendees to be familiar with Unix systems programming, the more you knew
about Unix the easier it was to understand the presentation. After all, learning
everything about a new operating system in eight hours is quite a challenge.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

On Tuesday, Ted T'so gave a tutorial on writing device drivers under Linux. This
talk was attended by about 60 students. I elected to take Tuesday as a day to
catch up on LJ work and make a run to Fry's Electronics to see if they carry
Linux Journal. They don't—which makes no sense as Fry's is exactly the kind of
place a Linux geek would want to go.

Tuesday evening started with free food and drink. This is one of the best ways
to get geeks talking. The Marriott did a great job with an array of food carts with
various choices including fruit, veggies, potato patties, nachos, hamburgers and
hot dogs. There were also drink and dessert carts. They even had my drug of
choice, Dr. Pepper.

There were Birds-of-a-Feather sessions scheduled from 6PM to 10PM. The two
Linux ones were scheduled at the same time, both at 7PM. As I already know a
lot about Caldera Linux I elected to go to the talk on Electronic Design
Automation (EDA). Peter Collins, manager of software services for Exemplar
Logic, headed the BoF and talked about how his company had done an NT port
but now had a Linux port. He pointed out that EDA grew up on Unix-based
systems like Suns and the capabilities of Linux were a better fit for current EDA
users.

The Trade Show

The trade show started on Wednesday. While this was not a Linux-specific trade
show, Linux had a large presence. Linux vendors included Caldera, EST (makers
of the BRU backup utility), InfoMagic, Linux International, Red Hat, Walnut
Creek CDROM, WorkGroup Solutions and Yggdrasil. Plus, of course, our booth
where we were giving away sample copies of Linux Journal. Lots of other
vendors came by to talk about Linux and the Linux products they sell.

Linux interest was very high. While Usenix is a geek conference, these are
mostly professional geeks who are making serious technical decisions for real
companies. I answered many “It seems like Linux could do this” inquiries.

Within the trade show I think SSC offered the biggest hit. We just finished our
new “fences” T-shirt. We sold out of the shirts in about four hours on the first
day. This gave me the feeling that I was at the right show—not one where
Microsoft was being honored.

Linus Talks and Linux Talks

On Wednesday afternoon we proved how significant the Linux interest/
presence was. Linus was scheduled to talk on the future of Linux in a fairly
large room, which soon filled up, with standees everywhere—including the hall
outside. Usenix quickly offered to move the crowd into a much larger hall.

The talk went well as Linus explained new features and new ideas. I won't bore
you with details. The important thing is that the goal is world domination. To
some this sounded like humor. Maybe it was. Only time will tell. In the
meantime, building a superior product can't hurt.

Wednesday evening was a time for more Linux sessions. I attended one called
The Classroom of the Future that showed how an experimental program
brought the Internet to K-12 schools in Ireland. I also attended another called
The Future of the Linux Desktop, missing Greg Wettstein's talk on perceptions.
[see Greg's article “Linux in the Trenches” in LJ #5, September 1994—Ed.]

Thursday was another day of talks and trade show. Peter Struijk, SSC's “head
nerd” managed to make it to Victor Yodaiken's presentation on real-time Linux
[see LJ #34, February 1997] and a talk on the /proc file system by Stephen
Tweedie. In the evening, I hosted a session on embedded, turnkey and real-
time systems and intended to make it to Developing Linux-based electronic
markets for Internet Trading Experiments but ended up talking with some of
the attendees of my session instead.

The evening ended with a short talk about Linux and reality with Stephen
Tweedie and then a trip back to the hotel room to finish up this column. Then, if
I run out of things to do I may actually get some sleep.

Friday offered a day of Uselinux business talks. However, the combination of
editorial deadlines and exhaustion means you won't get to read about it here.

What Next?

It was a great show. Usenix has always been a great show offering high-quality
sessions and a really nice mix of “non-suites”. Having Usenix/Uselinux made it
all the better. I am sure there will be serious cooperation between Usenix and
Linux International to continue to making Linux a big part of Usenix.

If I have one complaint it was that there was too much to do. Add a Linux
International board meeting to a schedule that included sessions, talks and
BoFs from 9AM to 11PM with parallel Linux tracks plus the normal Usenix
tracks and there just wasn't time to breathe or, more importantly, sit down with
a beer and talk to fellow kernel hackers, systems administrators or vendors.

Anyone who wants copies of the Proceedings of this conference, or to find out
what the future holds with regard to Usenix, should contact USENIX Association
at office@usenix.org, check out their web site at http://www.usenix.org or, if all
else fails, call 510-528-8649. Oh, and if you don't know what 8649 spells, you
must be new to the Unix community.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Linux at Lectra-Systèmes

Pierre Ficheux

Issue #36, April 1997

Linux as used in CAD/CAM design by Lectra Systemes, France.

Lectra Systèmes is one of two world leaders in the design and creation of the
CAM solution, CAD/CAM and cutting machines, mainly for the footwear and
apparel industry. The headquarters of this company are in Cestas, in the
suburbs of Bordeaux, France. Five hundred people work here, 150 of whom are
in the Research and Development department.

I am in charge of systems development in the R&D Department. The system
group does all developments that concern base systems (e.g.,installation
procedures, graphic libraries, tools).

Since the 1980s, Lectra has developed its own computers based on Motorola
680x0 processors. The main part of the installed systems (approximately 3000
customers, 80% abroad) uses a mono-task, proprietary operating system,
written in 680x0 called MILOS for “Micro Lectra Operating System”.

Why Use Unix?

A few years ago, Lectra started to become interested in database systems
requiring the use of a more powerful system that would be multi-task and
multi-user. After some teething problems with the Unix-like, the choice turned
to implementing Unix System V3.2 for 680x0 architecture. The small team of
which I am a member has managed to port the UniSoft sources as well as the X
Window System graphic environment.

Lectra then decided to develop a new line of computers based on 68040
processors, much more powerful than the 68030. The operating system used
was the Unix USL SVR4.0 version, and another port was made.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Although this task proved to be very interesting, we were persuaded that this
computer (named OpenCad) would be the last one designed from scratch by
the R&D teams. A few people continued to show interest, but continuing to
support a series of computers that were too small to be competitive made it
difficult to remain in a hardware market that is a race against power and low
prices.

Lectra's Cultural Revolution

Despite OpenCad's commercial success with our customers, Lectra's
management quite rightly decided to launch the development of a completely
new range of products utilizing mainly Intel 486 and Pentium architecture, still
with a Unix environment and X Window System. The database applications
which use many resources would, on the other hand, be targeted to SUN
SPARC architecture.

After some comparative tests between the different versions of Unix on the PC,
it was decided to use Linux, which proved to be sturdy, have high performance,
and the right price. Also, having the sources of the system available proved to
be advantageous, as we use many special peripherals for which the adaptation
would be much more difficult on a Unix machine.

Developments under Linux

Having chosen the system, we now needed to adapt Linux to an industrial
solution. It is quite clear that Unix (and, therefore, Linux) is slightly more
difficult for a final operator to use. This adaptation must be done in two stages:

• at the installation procedure of the final product, as it is not possible to
expect a technician (a customer) to know how to install Slackware

• at the user interface, so that the administration of the station base
(network, users, access rights) and the specific functionalities of Lectra are
easily accessible by someone who is not necessarily a computer scientist

Installation Procedure

The Lectra distribution uses the same principles as other distributions—two
boot floppies and a CD-ROM. The installation screens use dialog-0.3, which has
proved to be extremely simple and powerful when it comes to creating a series
of installation screens. The main Lectra Linux installation window can be seen
in Figure 1.

Figure 1. Lectra Linux Installation Main Menu

https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f1.jpg

The main advantage when choosing Linux in this domain is that it has the
possibility of creating an extremely precise installation procedure (i.e., only
what is required is installed), and it is therefore very quick. The current Lectra
Desktop version takes less than 10 minutes to install on a Pentium 120. In
comparison, the same desktop version on a Solaris system takes nearly an
hour, as it is necessary to install the Solaris CD first, followed by Solaris patches,
and then the Lectra Desktop.

The different packages are managed as ISO-9660 files (with Rock Ridge
extensions) from a Linux structure using the mkisofs program. The ISO images
are then written on the master CD using a PC under Microsoft Windows.

OpenPartner Desktop

The first graphic applications under MILOS had a very spartan look, due to the
weak performances of the graphic controllers at that time (beginning of the
1980s). The screens, although graphical, could manage only 16 colours, and
moreover, they did not use multiple windows. Hastened by competition, in
1990 Lectra decided to develop the graphic interfaces to a multi-window
system facilitating the operator's work for basic operations, such as launching
applications or working with files. This tool, called OpenPartner, was initially
developed for the MILOS target using a low level owner library (similar to Xlib
calls). The structure of the interface seemed very similar to that of the Xt/
Intrinsics Widgets hierarchy.

The port of OpenPartner to the Unix environment comes with the addition of
the administrative functions of the station by a privileged user, in particular:

• Adding and removing Lectra packages
• The network management (adding/removing stations, NFS mount

management)
• Serial lines and modem management
• Printer management
• Licenses and Lectra applications management
• User management, in particular the applications authorised for each one

Figure 2 is an example of the main window in the OpenPartner environment
with the package management utility, P-Manager.

Figure 2. OpenPartner with the Package Management Utility P-Manager

One of the important tasks was to develop a printer management system that
could be extended and was easy to use. Even while supporting Unix, we have to
admit the print system on MS Windows or even MacOS is much clearer and

https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f2.jpg

easier to use than on our favourite operating system. Furthermore, all the
printers currently on the market are supplied with their own Windows or
MacOS driver.

Our print system (operating customer/server) uses the Ghostscript program
which manages different types of printers (PCL, PostScript, raster) on varied
connections—serial line, Centronics, network, SCSI. A graphic tool integrated in
OpenPartner, I-Manager, is used to select only the printer characteristics that
are actually used. The list then appears in the print selector of Lectra
applications.

Figure 3. Integrated Graphic Utility I-Manager

Lectra applications

The applications are intended for industrial professionals in apparel. The
garment is designed in various stages and corresponds to different trades. One
of the characteristics of the apparel industry is the use of sub-contractors and
delocalisation. Various stages of the apparel might be realised by the apparel
maker, yet production could be sub-contracted to another country. Some
countries deal only with the design or the production, and supply several major
brands.

The result of this situation for a company like Lectra is that it is absolutely
essential to design open software, as very few customers will buy a complete
series, and it is therefore necessary to know how to communicate with
competing software.

Another important constraint is to support lots of languages, such as Japanese,
Chinese or Russian, by using tools such as the Asiatic front-end-processor
under X11.

On first approach, we can expect the following stages when designing a
garment.

Design

The designer has to create a garment model, like an artistic drawing. His/Her
work is mainly based on the choice of shapes, colours, and types of fabrics that
can be used. The advantage of having a data processing tool is clear. Other
than the possibility of working on an “electronic sheet”, the software enables
the pattern maker to import fabric motifs in an electronic form or even by using
a scanner, to file the suggestions of different collections, and to make fabric
simulations in 2D or 3D.

https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f3.jpg

The ProStyle software offers all the above functions on a high performance
Linux PC (Pentium 120 with Diamond Stealth S3-968 graphics board, 16 million
colours). Sublimation printouts are also available. The software also works with
the Silicon Graphics architecture.

Figure 4. Graphics Software ProStyle

Pattern Making

The pattern makers must create the pattern of the garment, i.e., the plan with
quotation, from the information given by the designer. He/She must also
manage the different sizes, or grading, available. The information in this phase
is one of the most interesting with the marker (see below) as it has a high
turnover—the number of patterns produced.

Figure 5 is a view of the initial screen of the Modaris application, designed for
the pattern maker.

Figure 5. The Modaris Pattern Maker Utility

The Marker

The marker maker must optimise the material use, i.e., the piece of fabric called
width, depending on the list of pieces given by the pattern maker. The quality of
the work of a marker maker is expressed in the efficiency of a marker, which
corresponds to the material quantity used in relation to the material loss. A
good marker has an average efficiency of 85%, meaning 15% of the material is
lost. A gain of a few tenths of a percent in production can have important
economic consequences when it concerns costly materials like leather and high
quality fabrics.

The Diamino software working on Linux/PC has a semiautomatic marker,
making work easier for the marker maker as it facilitates positioning the piece.
It also has a new automatic marking module (which marks all the pieces on the
width without any manual intervention), the performance of which today is
nearing 2% of that of a professional marker.

With the current PC architecture, it is now possible to obtain such a result at a
very attractive price, whereas only a few years ago, the existence of an efficient
module for the automatic marker was impossible due to material costs.

Figure 6 shows the evolution of the automatic marker making performances
depending on the architecture used (time in seconds). The old Lectra X400 and
X410 computers are based on the 68030 and 68040 processors operating

https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f5.jpg

under System V R4. The three PCs—DX2/66, Pentium75, Pentium120—used
Linux kernel version 1.2.13.

Figure 6. Relative Performance of Automatic Marker Software on Various

Platforms (time in seconds)

The Cut and Plot

The cut of the pieces can be done by hand or with a cutting machine, which has
a better turnover advantage. In some cases, one does not cut the pieces, but
just plots the shapes on a paper support to give to the sub-contractor.

The previous range of products from Lectra required the purchase of a
computer per plotter or cutter, as the MILOS operating system of the
computers was mono-task; in other words, the plotters and cutters were run by
serial channel.

The new VigiPrint software developed under Linux controls about ten plotters
simultaneously, giving a cost savings that should not be ignored when
considering the configuration, together with much more facility in controlling
the plot by managing the plotters on the same screen. The number of cutters
managed by the software is limited to only one for safety reasons—the
operator must be attentive to any blade break or other anomaly. The cut is
made either with a blade (most common), a high pressure water jet (2000 bars),
or a laser beam.

The Production Management

The Lectra suite of software, MasterLink and StyleBinder, enables managing all
the data manipulated by the previous trades. In this way, it is possible for a
given product to define the production follow-up folders which are filed in the
relational databases. These databases make it possible to file various elements
of a previous collection and re-use them in a current collection.

Below is a screen from the StyleBinder software under Linux.

Figure 7. StyleBuilder Software under Linux

Problems Encountered

The main problem is the integration of new peripherals, since the PC world is
literally in the hands of Microsoft. Some peripheral manufacturers, mainly small
manufacturers, are attentive to the Linux evolution and collaborate easily when
designing drivers. The large companies are much more difficult to convince,
and they often hide behind the imperatives of “marketing strategy”, refusing to

https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/1370f7.jpg

supply the information required. Generally they refuse to accept any solution
other than Microsoft, especially when it concerns technical support, since the
development teams are rarely directly accessible in such structures.

However, the problems encountered are limited in number:

• The MATROX Millennium board which was not supported by XFree86
because MATROX requires a non-disclosure agreement before they will
release the technical information required. This situation is a hindrance
for us, since the Lectra applications use specific peripherals, e.g., graphic
tablets, miniature keyboards, ultrasound pens, which mean the X server
must be altered to manage the “input extensions”. Our choice is therefore
limited to boards based on S3 circuitry, like Diamond and #9.

• Lots of storage peripherals connected via a parallel port can't be used
with Linux, as each port is unique to each manufacturer and the
information and protocol used are extremely difficult to obtain. Therefore,
we use SCSI peripherals and internal drives on floppy port (ftape).

• The Linux installation on the PC Notebook is sometimes difficult due to
the special graphic circuits not supported by XFree86.

Other subjects have caused us, and in some cases are sometimes still causing
us, a few worries:

• The absence (at the moment) of a Microsoft Windows emulator at a
professional level is a serious problem since our customers sometimes
need to use documents from MS Windows to integrate them into our
applications. The next software release of this type will be a boost for the
generalisation of Linux as a desktop solution.

• The swap management of Linux 1.2.13 does not seem quite as good as
some other versions of Unix (such as SunOS-4.1.3). It appears the swap
operating on Linux 2.0 has improved greatly.

• The Lectra environment uses the SCSI interface intensively (for some top-
of-the-line printers and scanners), and we have corrected a few bugs in
the Linux SCSI driver. The corrections forwarded to the Linux developers
seem to be integrated in the 2.0 kernel.

Conclusion

The experience of the new Lectra range shows it is possible to build an
industrial solution under Linux. The system is stable and powerful. It is possible
to gather a wide range of information thanks to the Internet, which has proved
to have the highest performance in technical support. Having system source
code makes it possible to develop more functions more easily (e.g., material
drivers or individual protocols, specific file systems).

The new orientations announced during the last Linux congress in Berlin
(improvement of the Virtual File System, optimisation of the EXT2 file system,
the Wabi MS Windows emulator, multi-processor support, adoption of Linux by
Digital) assures us Linux has acquired much industrial maturity.

Furthermore, the choice of a PC platform allows us to offer customers
industrial and administrative applications on the same machine.

The opinions expressed in this article are those of the author and not of the
Lectra-Systemes company.

Pierre Ficheux is in charge of the system development team at the R&D
department of Lectra-Systemes, Cestas, France. He has been a Linux enthusiast
(some say fanatic) since version 0.99. When not doing something with Linux, X,
HTML or fr.comp.os.linux, he loves picking tunes on his guitar or just staying on
the nice beach of Arcachon. He can be reached by e-mail at: pierre@rd.lectra.fr.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A 10-Minute Guide for Using PPP to Connect Linux to the

Internet

Terry Dawson

Issue #36, April 1997

Having trouble connecting to the Internet? Here's an easy way to do it using
PPP.

Connecting your Linux machine to the Internet with PPP is easy in most
situations. In this article I show you how to configure PPP for the most common
type of connection. We assume your Linux machine is a stand-alone machine
that dials into an Internet Service Provider and performs an automatic login,
and the Internet Service Provider allocates the IP address that your machine
will use. You can find details of how to configure PPP for other situations in the
PPP-HOWTO by Robert Hart. You will need the right software and a couple of
pieces of information before you start. Let's get started.

Preparation

First, check that you have the right software. The program that manages PPP
for Linux is called pppd. The pppd program is linked very tightly with the kernel,
so you must run a version of pppd that matches your kernel.

Kernel Version pppd version
1.2.* 2.1.2d
1.3.0 -> 1.3.84 2.1.2d
1.3.84 -> 1.3.99 2.2.0f
2.0.* 2.2.0f
2.1.* 2.2.0f

Check the version of pppd and kernel that you have installed with the following
commands:

$ /usr/sbin/pppd version
$ uname -a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The first command is a trick. The pppd command doesn't actually have a
version option. However, the version number will appear in the error message
pppd returns, since you have supplied it with a bad argument.

If the first command fails, you probably don't have PPP installed. You can
obtain the latest version of the source from:

ftp://sunsite.unc.edu/pub/Linux/system/Network/serial/ppp/

If you have installed from a distribution such as Debian, Red Hat or Slackware,
the pppd program is available precompiled within those distributions. You just
have to get the package and install it.

Next you must check that your kernel has PPP support. Do this by giving the
command:

$ dmesg | grep -i ppp

You should see the following messages:

PPP: version 2.2.0 (dynamic channel allocation)
PPP Dynamic channel allocation code copyright 1995 Caldera, Inc.
PPP line discipline registered.

If not, PPP may have been installed as a module. Become root and try:
insmod ppp

If that fails, you will have to rebuild your kernel with PPP support. Follow the
instructions in /usr/src/linux/README, and when configuring your kernel
ensure that you answer “Yes” to:

General setup --->
 [*] Networking support
Network device support --->
 [*] Network device support
 <*> PPP (point-to-point) support

These prompts may be different in non-2.0 kernels.

Next you must note what keystrokes you will send and what prompts you will
receive to log in to your ISP. The best way to collect these is to try manually
logging into your ISP using a terminal program such as minicom. Be sure to
make note of the capitalization of prompts such as the “login:” prompt as this
will be important later.

A typical scenario follows:

Expect Send Comment
------ ---- -------
nothing AT&F/r (mode reset)
OK AT&D2&C1/r (mode initialization)
OK AT&D555-9999/r (modem dialing command)

The modem dials, sends CONNECT message and then you enter userid and
password as follows:

login: username/r
password: password/r

Lastly, you must know the IP address of a nameserver so that you can configure
your name resolver and use host names instead of IP addresses. Get this
information from your ISP.

Configuring PPP

The pppd program can accept configuration parameters from two places. The
first is from the command line, and the second is from “options” files. The
arguments supplied are close to identical in either case, but the command line
method can be messy. So I will describe how to configure PPP using the options
files instead.

The normal location of the options file is:

/etc/ppp/options

The options file is a simple text file containing parameters pppd will use when it
is executed—one parameter per line. The options file must be readable by
whoever will execute the pppd program. In most installations this will be root,
either directly or by executing pppd from a program like sudo.

If you don't have an /etc/ppp directory, as root create one using the following
commands:

mkdir /etc/ppp
chown root:root /etc/ppp
chmod 755 /etc/ppp

Create an /etc/ppp/options file that looks like the following example:

debug
/dev/ttyS0
38400
modem
crtscts
lock
connect /etc/ppp/net-connect
asyncmap 0
defaultroute
:

This example assumes:

1. You want PPP to give you diagnostic information as it runs.
2. Your modem is connected to serial device /dev/ttyS0.

3. You want the serial port speed to be set at 38400 bps.
4. You want to listen to the Data Carrier Detect signal.
5. You will use hardware (RTS/CTS) handshaking.
6. Your dialer program is /etc/ppp/net-connect.
7. You have a full 8 bit clean connection.
8. By default datagrams should be sent via the PPP link.
9. You want the PPP server that you call to assign the IP address you will use.

These are all fairly typical defaults for an ISP connection. You will have to adjust
the serial device to suit where you have your modem connected and, if you are
using data compression, you might want to set your serial port speed to
something higher. PPP provides a means of escaping select characters, so that
they do not interfere with your connection. For example, if you were running
PPP over a link that would disconnect if it received a control-D character, you
could ask PPP to escape that character, and it would automatically replace it
with another and reverse the process at the other end. While the default is
safe, it escapes a number of characters that normally don't need escaping and
this will decrease the performance of your link. Since most ISPs provide 8 bit
clean links you don't need to escape any characters, so we tell pppd not to,
using the asyncmap option.

The pppd package includes a program called chat. The chat program is a simple
program that can be used to automate the dialing procedure. The chat
program also accepts arguments from the command line or from a file. Again
I'll describe how to configure it from a file as this is the better method.

To make use of the chat program from within pppd, we must ensure that the
connect option points to a script that calls chat. Create a script called /etc/ppp/

net-connect that looks like:

#!/bin/sh
/usr/sbin/chat -v -t 60 -f /etc/ppp/net-chat

This shell script will invoke the chat command with the -v, -t and -f arguments.
The -v argument is useful when you are configuring pppd, as it sends verbose
diagnostic messages to the system log to show you what is happening as the
chat program runs. The -t 60 argument simply tells the chat program to wait 60
seconds for the expected text to arrive before timing out with an error. The -f
argument tells chat the name of the file it should use to get the expect/send
sequences it will use to login.

Make sure the script is readable and executable by whoever will invoke pppd.
Assuming again that “whoever” is root, use the following commands:

chmod 500 /etc/ppp/net-connect
chown root:root /etc/ppp/net-connect

Create a chat script called /etc/ppp/net-chat that will automate the login
sequence as described earlier. I will base this script on the details presented in
the table.

ABORT "BUSY"
ABORT "NO CARRIER"
"" AT&F\r
OK AT&D2&C1\r
OK ATD555-9999\r
ogin:
sword:

The first two lines are special. The ABORT keyword is a special token that allows
you to specify strings of characters that will cause the chat program to exit. In
the example presented, if the chat program receives either the string "BUSY" or
the string "NO CARRIER" then it will abort immediately. The rest of the file is a
simple list of expect/send pairs, based on the information we gathered when
we manually logged in. The above example reads in full:

ABORT the script if we receive "BUSY" or "NO
CARRIER". Expect nothing, then send AT&F< carriage-
return> to reset the modem to factory configuration,
expect to receive OK then send AT&D2&C1<carriage-
return>, then expect OK and send
ATD555-9999<carriage-return>, then expect login: and
send username<carriage-return>, then expect sword:
and send password<carriage-return>, and then exit
normally.

There are a couple of important points to note in this example. First, the
modem initialization string I've suggested will, in most modems, ensure that
the modem will raise the Data Carrier Detect line when a call is connected, and
will hang up the call if the DTR line is lowered. This ensures that the modem is
matched with the modem option supplied to pppd. Second, I haven't used the
full prompt, but only the last few characters. This is generally good practice
because under some circumstances the first characters from a line may be
dropped. Looking only for the last few characters ensures our login succeeds
even if this occurs. Finally, you will notice the <carriage-return> is coded as \r.
There are a range of other characters may be encoded and sent in this way, if
necessary. The chat man page explains what they are should you need to use
them.

Finally, we must ensure this script is readable by whoever will invoke pppd.
Again assuming that whoever is be root, you can use the following commands:

chown root:root /etc/ppp/net-chat
chmod 600 /etc/ppp/net-chat

Configuring the Name Resolver

The name resolver is a small piece of software within the standard Linux library
that allows automatic conversion of a host name, e.g., sunsite.unc.edu, into an
IP address, e.g., 152.2.254.81.

Configuration of the name resolver is easy; there is only one file to change. You
will almost certainly already have this file on your machine, but you will need to
configure the correct address for the nameserver. Assuming your ISP supplied
you with a nameserver address of 128.78.64.10 then your /etc/resolv.conf file
should have a line that says:

nameserver 128.78.64.10

Starting the Link

To start the PPP link, all you need to do is execute the following command as
root:

/usr/sbin/pppd

The pppd program will start and will search for its options in the standard
locations. It will find our options file at /etc/ppp/options and read each line.
When it has finished processing all available options, it will open the specified
serial device, create a lock file to prevent other programs from trying to use it,
and then attempt to run the connect program and to execute the /etc/ppp/net-
connect script. The net-connect script will execute the chat program telling it
that it should take its parameters from the /etc/ppp/net-chat file. The chat
program starts, reads each of the lines from the net-chat file, waits for the
strings, and sends the responses it has been given. Provided the chat program
did not ABORT then control is passed back to the pppd program, which will
then switch the line into PPP mode and create a PPP network device. The pppd
program will automatically begin negotiation of some configuration details with
the PPP program at the other end of the link. The most important of these
details is the IP address you will use. The pppd program will create a ppp
network device ppp0 and then configure it with the details it obtained from the
other program. Finally, the pppd program will configure your routing table with
a route that tells your Linux machine it should send datagrams to the PPP link,
if it doesn't have anywhere better to send them. The pppd program will then sit
happily in the background until either the line fails, the remote end closes the
connection or you terminate it locally.

Okay, that sounds complicated, so a summary:

1. pppd starts.
2. pppd reads /etc/ppp/options.

3. pppd executes /etc/ppp/net-connect.
4. chat reads data from /etc/ppp/net-chat.
5. pppd obtains IP address details from server.
6. pppd creates ppp0 device and configures it.
7. pppd creates default route.
8. pppd runs in background.

Testing the Connection

To test the connection, do each of the following steps in turn.

Step 1:

run /sbin/ifconfig

The ifconfig program is used to set or display network interface configurations.
Here you are interested in displaying only.

Step 2:

/sbin/ifconfig

The output should look like Listing 1.

Listing 1

The inet addr field is the IP address you have been allocated. The P-t-P field is
the address of the PPP machine at the other end of the link. This means your
PPP network connection has been successfully established.

If you don't see a ppp0 device, check your system log file, i.e., /var/adm/
messages, to ensure that your chat script worked successfully. Correct any
possible errors. If you see any nasty looking error messages, double check that
you are using the correct version of PPP for your kernel.

Step 3: ping the PPP Remote Host. The ping command sends specially
formatted datagrams to a host that that host will send replies to. This allows us
to check that we have a working route to that host. Listing 2 shows our case.
Those “64 bytes from ...” lines in the listing mean we are talking successfully to
the machine at the other end of the link. This is good, since it means the link is
working.

Listing 2

https://secure2.linuxjournal.com/ljarchive/LJ/036/2109l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2109l2.html

If you don't see any of the “64 bytes from ...” lines, this means you are not
properly talking to the remote machine. Double check your chat script and the
system log file.

Step 4: ping your nameserver. This is an important test to be sure the default
route pppd put in place is working. To do this, ping the nameserver address
configured into the /etc/resolv.conf file. In our case:

ping 128.78.64.10

Output will be similar to what you observed when you pinged the PPP server.

Listing 3

If this test fails, it could mean your default route hasn't been added properly.
To double check, run the route command as shown in Listing 3. The route
command displays the contents of the IP routing table. The -n option tells it not
to try and convert IP addresses into host names. The line starting with 0.0.0.0 is
the default route. If you don't see a line like this, double check that you have
included the defaultroute option in the /etc/ppp/options file. If you have a line
like this but it doesn't point to ppp0, check that your system isn't already
creating a default route to another device. If it is, find which rc file is doing it
and comment out this entry.

Step 5: ping a remote host. This is the real and simple test. Try either:

ping sunsite.unc.edu

or:

ftp ftp.funet.fi

If this works, you are connected properly to the Internet. Enjoy.

If the command just sits there and, after a minute or so, gives you an error
message about being unable to resolve the host name, check that you have
modified your /etc/resolv.conf file correctly, and that the IP address you have
configured there is the correct IP address for your ISP's nameserver.

Dropping a Connection

To drop a connection you just need to kill pppd. When it exits, it will hang up
the line, if you've configured the modem as I've suggested.

On most distributions this will be as simple as:

https://secure2.linuxjournal.com/ljarchive/LJ/036/2109l3.html

killall -HUP pppd

Making PPP Automatically Redial

If you are lucky enough to have a semi-permanent connection to your ISP, i.e.,
one where you can stay connected for as long as you like, you may want to
have your Linux automatically redial if the telephone call drops out for some
reason. Here is a simple way of doing this that assumes you have configured
your PPP link to be activated by root.

The first very important step is to add this line to your /etc/ppp/options file:

-detach

This line tells pppd not to go into the background after it has successfully
connected. The next step is to add a line to your /etc/inittab file that looks like
this:

pd:23:respawn:/usr/sbin/pppd

Put this line down with the other lines that are similiar to it—the ones that run
the login program.

This line simply tells the init program that it should automatically start the /usr/
sbin/pppd program and that it should automatically restart it if it dies. Provided
you have your modem configured to raise Data Carrier Detect and you have
configured pppd as I have described, init will ensure the pppd program is
always running and re-run it if it terminates.

A word of warning—this is simple, but provides no safeguards against
problems that might cause the telephone call to be successfully made and then
hang up. If you experience this problem, the init program will quite happily
keep re-running the pppd program until you tell it to stop. You could run up
quite a telephone bill if something nasty goes wrong.

Conclusion

This article describes a basic PPP configuration. There are many excellent
documents that provide more detailed and comprehensive information on the
subject. This article should be sufficient to get you connected to the Internet in
a typical configuration. If you have any problems you cannot diagnose, I
strongly recommend you read the PPP-HOWTO by Robert Hart at:

http://sunsite.unc.edu/LDP/HOWTO/PPP-HOWTO.html

Robert has done an excellent job in rewriting the HOWTO, and it should be of
assistance to you.

Terry Dawson is the author of a number of Linux HOWTO documents including
the AX25-HOWTO, IPX-HOWTO and the NET-2-HOWTO. Terry has been an
advocate of Linux from the moment he booted Linux 0.12 and saw the
potential for Linux to significantly enhance experimentation in networking
protocols in Amateur Radio. He can be reached via e-mail at
terry@perf.no.itg.telecom.com.au.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

od—The Oddest Text Utility Around

Randy Zack

Issue #36, April 1997

When you need to debug binary code, use a dump provided by a nifty
command called od.

Suppose you are writing the next great spreadsheet for Linux, and you're
actually getting along pretty well. You have a program that can edit cells, format
the screen, and do all the really good spreadsheet stuff. And you can even save
the sheets in a user-specified file. But then you make a change to the format of
the file, and you realize you need to examine the file, byte by byte, in order to
determine what went wrong with that last change. You know that Emacs can
show you the file, but you can't remember exactly how to get into hexadecimal
mode, or what to do once you are there.

Or suppose you are writing a viewer program for your favorite word-processor,
which runs only under your second favorite operating system (WINE and
DOSEMU notwithstanding). So you need to figure out exactly what each binary
code in that .wpd file really is, so that you can determine what each binary code
does by trial and error. (What a trial and error process that would be.)

Or maybe you are curious about exactly what escape sequence is sent to your
terminal when a curses program positions the cursor. (Maybe this example is a
bit contrived, but it's interesting nonetheless.)

If any of these scenarios describes your current dilemma, then od is just the
utility for you. od stands for Octal Dump, because it was named before
computer users started using hexadecimal for everything, and because it can
dump a file (binary or not) into almost any form you can imagine.

So let's see what can be done with od. The easiest thing to try is to get an octal
dump of od itself. Listing 1 shows the first 6 lines of output of the command od

`which od`. There are several things to notice about this example. (Note: I'm
using an older a.out version of od, so this is might not be exactly what you see

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/036/1326l1.html

on your system.) By way of explanation, the first column is the “offset” into the
file, and the remaining columns are the actual data in the file.

There are three things to notice about this listing. First, all the numbers are in
octal, or base 8. I'm not aware of anyone using octal notation for anything
anymore. And of course, with the GNU version of od, there are options for
changing how everything gets displayed—more on that later.

Second, all the numbers are 16 bits wide. Since Linux is a 32-bit operating
system, this is probably not what you want. Again, there are ways of modifying
this behavior.

Third, the third line of output contains a single *. This is od's way of saying that
there are many lines just like the previous line, which have been removed from
the output. It then continues the output at offset (octal) 2000, which is the first
line that differs from the previous line. (Can you guess that this behavior can
also be modified? It can.)

As mentioned earlier, od has many options for formatting the output. The first
one to mention is -t xS or -t xL, which will cause the output to be in hexadecimal
(base 16). The S or L modifier tells od to read 16 bits (S) or 32 bits (L) at a time.
To all you C programmers, yes, those modifiers stand for “short” and “long.”
There are other modifiers as well, and good descriptions for them can be found
in the man page for od. Listing 2 shows the first six lines of output of the
command:

od -t xS `which od`

od can also output the characters of the file. And if you want to do some
comparisons, you can intersperse the hexadecimal output with the character
output. Just give both types on the command line (see Listing 3) as:

od -t xS -t c `which od`

There are a couple of things to note about this example. The character-type
arguments don't take a size modifier—they just read one character at a time.
That's why we used -t c and not -t cS.

Also, the ordering of the character data looks strange. The first 4 bytes in the
hexadecimal dump are 010b 0064, while the first 4 bytes in the character dump
are \v 001 d \0. This is because my Linux machine runs on an Intel-based chip
set, which is a little endian architecture. Other architectures will print this
differently. In fact, this is the easiest way I know to determine whether the
machine you are running on is big-endian or little-endian. The actual command
to determine this would be something like:

https://secure2.linuxjournal.com/ljarchive/LJ/036/1326l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/1326l3.html

echo abcd | od -t xS

A little-endian machine would output:

0000000 6261 6463 000a

while a big-endian machine would output:
0000000 6162 6364 0a00

I haven't actually seen Linux on a SPARC or a DEC Alpha chip; I would guess
these Linux systems would be big-endian.

Let's get back to the last example. Notice that the character output of the last
example has a lot of backslashes in it. This is one method od uses to show that
the character it is trying to print is really not a printable character. Another
method is to show the character in octal. Examples of the first method are \v
and \0 and (at offset 2024). Examples of the second method are 001 and 315 (at
offsets 0001 and 2017 respectively). (Offsets are still in hexadecimal—we're
getting to that problem.)

If you really hate octal, and want to see the offsets in a different base, od allows
that. The option is -A x to see the offsets in hexadecimal, or -A d to show the
offsets in decimal. (Enough of showing listings of these commands—just do it.)

You might have noticed that od always shows 16 bytes per line. Of course, you
can change this as well, by using the -w option. The argument after the -w flag
is the number of bytes to read before outputting a line of text. The default
without the -w flag is 16 (as you can see from all the examples). The default
with the -w flag (i.e. -w by itself) is 32. Unfortunately, I couldn't get this option to
work on my machine. Every number I gave (-w20, -w18, -w16) caused od to
report “invalid width specification.” (I'm using GNU textutils version 1.9, for
what it's worth.)

Sometimes you want to see the whole file, and not repress any output. The -v
option tells od to not skip any lines, and to output everything. This can be
useful if you need to compare two different binary files, and you want to
compare the actual bytes in the files, without skipping any of the output.

Finally, all of these options have a long format, as is standard with GNU utilities.
For example, the -v switch can be expanded to --output-duplicates. I tend to use
the long form in scripts, so it is clear to others exactly what options I'm sending
to the program, and the short forms when I'm just working.

So, how exactly do you see the escape sequence sent to your terminal when a
curses program positions the cursor? Try the command:

tput cup 10 10 | od -t c

Randy Zack can be reached via e-mail at randy@acucobol.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

M. L. Richardson

Issue #36, April 1997

Raima Database Manager, PC Watchdog, TextSurgeon 2.0 and more.

Raima Database Manager

Raima Corporation announced that the Raima Database Manager++ database
is now available for Linux. RDM contains low level C and C++ APIs and support
for the relational database model, pointer-based network database model, and
combined database model. Buyers of the development license can distribute
run-time copies free. Contact Raima for pricing of license.

Contact: Raima Corp., 1605 NW Sammamish Rd. Suite 200, Issaquah, WA 98027,
Phone: 800-327-2462, Fax: 206-557-5200, URL: http://www.raima.com/.

PC Watchdog

Berkshire Products has announced the PC Watchdog, a system watchdog/
monitor board. The board is a short 8-bit ISA card that monitors a PC for
hardware/software lockups to ensure maximum system availability. It provides
a solution for Telecom, BBS, Voice Mail, File Servers and Industrial systems that
occasionally lock up, but must be available on a continuous basis. Watchdog
comes with TSRs and utility programs for control of the board. PC Watchdog is
available for Linux. Contact Berkshire Products for pricing.

Contact: Berkshire Products, P.O. Box 1015, Suwanee, GA 30174, Phone:
770-271-0088, Fax: 770-932-0082, URL: http://www.berkprod.com/.

TextSurgeon 2.0

SoftwareForge Inc., announced the release of TextSurgeon 2.0, a new text
editing system for Linux. TextSurgeon comes with the ability to use most of the
standard Linux programming interpreters such as shell, awk, Perl and sed for

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

automation of editing tasks. It also includes special support for code browsing,
and advanced features especially for C/C++ coding. It is available for $50 US.

Contact: SoftwareForge Inc., Chicago, Ill., E-mail: unixguy@aol.com.

Edith Pro/X11

ZFC has announced the release of Edith Pro for X11, a quality, user friendly text
editor. It is highly flexible and provides many features not available in other
editors. For details see the web site at http://www.nl.net/~zfc/. It is available for
Linux at a price of $50 US for a single host, $250 US for a site license.

Contact: ZFC/home P.O.Box 15813, 1001 NH Amsterdam, the Netherlands.
Phone 31-20-4-208-248, E-mail zfc@zfc.nl, URL: http://www.nl.net/~zfc/.

Java Numeric Library

Visual Numerics has announced the release of the Java Numeric Library (JNL), a
solution for developers of platform-neutral, network-centric, computational
applications. The JNL is a set of numerical extensions to the Java Language for
use in many scientific and research situations. For more detail and pricing
contact Visual Numerics.

Contact: Visual Numerics, Inc., 9990 Richmond Avenue, Suite 400, Houston,
Texas 77042, Phone: 713-954-6761, Fax: 713-781-9264, E-mail:
dsayed@boulder.vni.com, URL: http://www.vni.com/.

MagicFax

Clarity Software, Inc. has announced MagicFax, software for the WWW that
allows faxes to be sent anywhere in the world for free to other MagicFax users.
Faxes sent to non-MagicFax users will save substantially on transmission costs,
as MagicFax routes the fax to the sender's MagicFax Web Server nearest the
recipient to avoid long distance charges. MagicFax is available for Unix
platforms and will be available for Linux in April. For pricing contact Clarity
Software.

Contact: Clarity Software, Inc., 2700 Garcia Ave., Mountain View, CA 94043,
Phone: 415-691-0320, E-mail: 104436.2576@compuserve.com, URL: http://
magicfax.clarity.com/.

F-Secure Data Security Software

Data Fellows has announced F-Secure Commerce and F-Secure VPN. F-Secure
Commerce is a browser plug-in which allows any browser user anywhere in the
world to have a fully secure, authenticated and strongly encrypted connection

to the web server running F-Secure Commerce for Server software. F-Secure
VPN (Virtual Private Network) connects multiple separate LANs together into a
secure virtual network solution over the Internet. It's a software-only solution
which runs on a standard Intel-based PC. For pricing contact Data Fellows.

Contact: Data Fellows, Inc., 4000 Moorpark Ave., Suite 207, San Jose, CA 95117,
Phone: 408-244-9090, Fax: 408-244-9494, E-mail: f-secure-
sales@datafellows.com, URL: http://www.datafellows.com/.

Stronghold 2.0

C2Net Software announced the release of Stronghold 2.0, a commercial
webserver on the Unix platform. The security interfaces have been redesigned
and built on the new Apache 1.2 code base. Many productivity and
performance enhancements have been made, and Stronghold is now fully
compliant with the new HTTP/1.1 standard. For pricing contact C2Net.

Contact: C2Net Software, Oakland, CA, Phone: 510-986-8770, E-mail:
cman@c2.net, URL: http://stronghold.c2.net/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Indexing Texts with SMART

Hans Paijmans

Issue #36, April 1997

Here is a “smart” program for indexing and retrieval of documents.

Although my colleagues here at Tilburg University may think the time I spend
fiddling with Linux on a PC could be put to better use, they are wrong. The
“fiddling with Linux” I do at home; at work I do only the minimum necessary to
keep Linux fed and happy. As most readers of this journal know, this involves
making the occasional backup and not much else.

When I sit in front of my PC, I work (well, mostly). Linux makes it possible to do
my work with a minimum of fuss, and a big part of the credit for this goes to
Jacques Gelinas, the man who wrote UMSDOS: a layer between the Unix
operating system and the vanilla MS-DOS file allocation table. This program
makes it possible to access the DOS partition of my hard disk from either
operating system. This is good news, since I am totally dependent on two
programs: SMART, an indexing and retrieval system, and SPSS for Windows,
which twiddles the data I obtain from SMART. SMART runs only under Unix (and
not all Unices, for that matter) and SPSS4Windows, obviously, runs under MS
Windows. Whatever the virtues of this operating system may be, you
emphatically do not want to use it in any kind of experimental environment.

I suppose Statistical Package for the Social Sciences (SPSS) will be familiar to
most Linux users. If not—SPSS is a statistical package not only for the “social
sciences”, but also for anyone who needs statistical analysis of his data.

SMART is an indexing and retrieval program for text. It not only indexes the
words, it also adds weights to them. It allows the user to compare the indexed
documents in the Vector Space Model and compute the distances between
documents or between documents and queries. To understand why this is
special, we must delve a bit into the typical problems of information retrieval,
i.e., the storage of books, articles, etc., and their retrieval based on content.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Why Indexing Is Not Enough

At the end of the 60s, automatic indexing of texts became a viable option, and
many people thought the problems of information retrieval were solved.
Programs like STAIRS (IBM, 1972) enabled the users to file and rapidly retrieve
documents using any word in the text and boolean operators (AND, OR, NOT)
with those words—who could ask for more? Then in 1985, a famous article was
published by two researchers in the field. Footnote 1. In this article, they
reported on the performance of STAIRS in real life, and they showed that the
efficiency of STAIRS and similar systems was, in fact, much lower than assumed.
Even experienced users could not obtain a recall of more than 20-40% of the
relevant documents in a database of 100,000 documents, and worse, they were
not aware of this fact.

The problem with all retrieval systems of this type is that human language is so
fuzzy. There may be as many as a dozen different terms and words pointing to
one and the same object, and one word may have widely different meanings. In
information retrieval, this can lead to one of two situations. One, you obtain a
high precision where almost all the retrieved documents are relevant, but an
unknown number of other relevant documents are not included. Or two, you
get a high recall that includes a lot of irrelevant documents in the result. When
the proportion of irrelevant documents is high in a retrieved set of documents,
the user will most likely stop looking before he or she has found all the relevant
documents. At this point, his “futility-point” has been reached. In such a case
the net result is equivalent to those relevant records not being retrieved.
Therefore, the concept of ranking, i.e., the ordering of retrieved documents
based on relevance, is very important in information retrieval.

SMART

Modern (and not so modern) research has offered a number of possible
solutions to this dilemma, among them the concept of weighted keywords. This
means that every keyword-document combination has a weight attached that is
(one hopes) an indication of the relevance of that particular keyword for that
particular document. SMART does just that: it creates indices for a database of
documents and attaches weights to them. The method may be expressed
intuitively as “the more a word occurs in fewer documents, the higher the
weight.” If the word “dog” occurs twenty times in a given document but in no
other documents, you may be relatively certain that this document is about
dogs. Information retrieval addicts like me talk about the tf.idf weight.

SMART offers several calculation options (I generally prefer the atc-variation,
because it adjusts for the length of the individual documents.) It calculates the
tf.idf in three steps. The first step creates the value

https://secure2.linuxjournal.com/ljarchive/LJ/036/2123s1.html

for the term-frequency (tf) as:

where

is the term with the highest frequency in the document. This adjusts for the
document length and the number of terms. Then the weight

where N is as before the number of documents and F is the document
frequency of term t (the number of documents in which term t occurs). Finally
the cosine normalization is applied by:

where T is the number of terms in the document vector. Now we have a
number between zero and one that probably correlates with the importance of
the word as a keyword for that document. For a detailed discussion of these
and similar techniques see Salton and McGill. Footnote 2. You will love it.

When SMART has constructed the index in one of the various ways available, it
can also retrieve the documents for you. This is done according to something
called the “Vector Space Model”. This model is best explained using a three-
dimensional example of a vector-space; you can add another few thousand
dimensions in your own imagination.

Imagine you want to index your documents according to three keywords—“cat”,
“dog” and “horse”—that may or may not occur in your documents. So you draw
three axes to get a normal three-dimensional coordinate system. One
dimension can be used to indicate the “cat-ness” of every document, the other
its “dog-ness” and the third the “horse-ness”. To make things easy we use only
binary values 0 and 1, although SMART can cope with floats (e.g., the “weights”
mentioned before). So if a document is about cats, it scores a 1 on the
corresponding axis, otherwise it scores 0. Any document may now be drawn in
that space according to the occurrence of one or more of the keywords, and so
we have a relatively easy way to compute the difference between documents.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2123s1.html

Moreover, a query consisting of one or more of the keywords can be drawn in
the same space, and the documents can be ranked according to the distance to
that query. Of course a typical document database has thousands of keywords
and, accordingly, thousands of dimensions, but the arithmetic involved in multi-
dimensional distances does not matter much to modern computers.

So SMART accepts queries, ranks the documents according to the “nearness” to
that query and returns them to you in that order. This ability makes it one of
the best retrieval systems ever written, even though it lacks the bells and
whistles of its more expensive counterparts. Although it is not really optimized
for speed, it typically runs 10-30 times faster than the fastest indexing program
for MS Windows that I have tried.

The DOS Connection

I do not use SMART for bread-and-butter retrieval, but for the weights it
computes and the indices it creates. At this point I usually want to do some
other manipulations of the data. I offer my thanks to the developers of Unix in
general and to Linux in particular for creating a whole string of ever more
complicated and sophisticated shell scripts, the standard Unix tools and a few
of “My Very Own” utilities that suffice to process the SMART output to a file that
is ready for import into SPSS.

Now I have to quit Linux and boot MS-DOS, start MS Windows and finally enter
SPSS to do the statistics and create some graphs. I am a newcomer to Unix
(indeed it was the fact that Linux offered a way to use SMART that pulled me
over the line two years ago). While MS Windows is not my favorite operating
system, SPSS gets the job done. When the output is written to disk, I
immediately escape back to Linux to write the final article, report, or whatever
with LaTeX.

The Bad News

On this point I have two messages—one bad. The good news is that SMART is
obtainable by anonymous ftp from Cornell University and can be used free for
scientific and experimental purposes. Better yet, it compiles under Linux
without much tweaking and twiddling. There is also a fairly active mailing list for
people who use SMART (smart-people@cs.cornell.edu).

The bad news: the manual—what manual? SMART is not for the faint of heart;
after unpacking and compilation, you'll find some extremely obscure notes and
examples, and that is all. Nevertheless, if you have more than just a few
megabytes of text to manage and the stamina to learn SMART, it certainly is the
best solution for your information retrieval needs. I do wish someone would
write a comprehensive manual. In the meantime, you may be helped by my

“tutorial for newbies” found at http://pi0959.kub.nl:2080/Paai/Onderw/Smart/
hands.html.

This article was published previously in Issue 13 of the
Linux Gazette.

Hans “Paai” Paijmans (paai@kub.nl) is a University lecturer and researcher at
Tilburg University and a regular contributor to several Dutch journals. Together
with E. Maryniak, he wrote the first Dutch book on Linux—already two years
ago. My, doesn't the time fly? His home page is at http://pi0959.kub.nl:2080/
paai.html .

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:paai@kub.nl
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

History of the Portable Network Graphics (PNG) Format

Greg Roelofs

Issue #36, April 1997

PNG is a new, awesome graphics format designed to take the place of GIF—
here's how it came about.

Prehistory

The story of PNG actually begins way back in 1977 and 1978 when two Israeli
researchers, Jacob Ziv and Abraham Lempel, first published a pair of papers on
a new class of lossless data compression algorithms, now collectively referred
to as “LZ77” and “LZ78.” Some years later, in 1983, Terry Welch of Sperry (which
later merged with Burroughs to form Unisys) developed a very fast variant of
LZ78 called LZW. Welch also filed for a patent on LZW, as did two IBM
researchers, Victor Miller and Mark Wegman. The result was—you guessed it—
the USPTO granted both patents (in December 1985 and March 1989,
respectively).

Meanwhile CompuServe—specifically, Bob Berry—was busily designing a new,
portable, compressed image format in 1987. Its name was GIF, for “Graphics
Interchange Format,” and Berry, et al., blithely settled on LZW as the
compression method. Tim Oren, Vice President of Future Technology at
CompuServe (now with Electric Communities), wrote: “The LZW algorithm was
incorporated from an open publication, and without knowledge that Unisys was
pursuing a patent. The patent was brought to our attention, much to our
displeasure, after the GIF spec had been published and passed into wide use.”
There are claims (Reference 1) that Unisys was made aware of this as early as
1989 and chose to ignore the use in “pure software;” the documents to
substantiate this claim have apparently been lost. In any case, for years Unisys
limited itself to the pursuit of hardware vendors—particularly modem
manufacturers implementing V.42bis in silicon.

All of that changed at the end of 1994. Whether due to ongoing financial
difficulties or as part of the industry-wide bonk on the head provided by the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html

World Wide Web, in 1993 Unisys began aggressively pursuing commercial
vendors of software-only LZW implementations. CompuServe seems to have
been its primary target at first, culminating in an agreement—quietly
announced on 28 December 1994, right in the middle of the Christmas holidays
—to begin collecting royalties from authors of GIF-supporting software. The
news hit the Internet the following week; what was then the comp.graphics
newsgroup went nuts, to use a technical term. As is the way of Usenet, much ire
was directed at CompuServe for making the announcement, and then at Unisys
once the details became a little clearer. Mixed in with the noise was the genesis
of an informal Internet working group led by Thomas Boutell (Reference 2). Its
purpose was not only to design a replacement for the GIF format, but a
successor to it: better, smaller, more extensible and free.

The Early Days (All Seven of 'Em)

The very first PNG draft—then called “PBF,” for Portable Bitmap Format—was
posted by Tom to comp.graphics, comp.compression and
comp.infosystems.www.providers on Wednesday, 4 January 1995. It had a
three-byte signature, chunk numbers rather than chunk names, maximum pixel
depth of 8 bits and no specified compression method, but even at that stage it
had more in common with today's PNG than with any other existing format.

Within one week, most of the major features of PNG had been proposed, if not
yet accepted: delta-filtering for improved compression (Scott Elliott); deflate
compression (Tom Lane, the Info-ZIP gang and many others); 24-bit support
(many folks); the PNG name itself (Oliver Fromme); internal CRCs (myself);
gamma chunk (Paul Haeberli); and 48- and 64-bit support (Jonathan Shekter).
The first proto-PNG mailing list was also set up that week; Tom released the
second draft of the specification; and I posted some test results that showed a
10% improvement in compression, if GIF's LZW method was simply replaced
with the deflate (LZ77) algorithm. Sidebar 1 is a time-line listing many of the
major events in PNG's history.

Perhaps equally interesting are some of the proposed features and design
suggestions that ultimately were not accepted: the Amiga IFF format;
uncompressed bitmaps either gzip'd or stored inside zip files; thumbnail
images and/or generic multi-image support; little-endian byte order; Unicode
UTF-8 character set for text; YUV and other lossy, i.e., non-lossless, image-
encoding schemes; and so forth. Many of these topics produced an amazing
amount of discussion—in fact, the main proponent of the zip-file idea is still
making noise two years later.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s1.html

Onward, Frigidity

One of the real strengths of the PNG group was its ability to weigh the pros and
cons of various issues in a rational manner (well, most of the time, anyway),
reach some sort of consensus, and then move on to the next issue without
prolonging discussion on “dead” topics indefinitely. In part, this was probably
due to the fact that the group was relatively small, yet possessed of a
sufficiently broad range of graphics and compression expertise that no one felt
unduly “shut out” when a decision went against him. All of the PNG authors
were male—a fact that is still true. (I'm sure there's a dissertation in there
somewhere.) But equally important was Tom Boutell, who, as the initiating
force behind the PNG project, held the role of benevolent dictator—much the
way Linus Torvalds does with Linux kernel development. When consensus was
impossible, Tom would make a decision, and that would settle the matter. On
one or two rare occasions he might later have been persuaded to reverse the
decision, but this generally happened only if new information came to light.

In any case, the development model worked. By the beginning of February
1995, seven drafts had been produced, and the PNG format was settling down.
The PNG name was adopted in Draft 5. The next month was mainly spent
working out the details: chunk-naming conventions, CRC size and placement,
choice of filter types, palette-ordering, specific flavors of transparency and
alpha-channel support, interlace method, etc. CompuServe was impressed
enough by the design that on the 7th of February they announced support for
PNG as the designated successor to GIF, thereby supplanting what had initially
been referred to as the GIF24 development project (Reference 3). By the
beginning of March, PNG Draft 9 was released and the specification was
officially frozen—just over two months from its inception. Although further
drafts followed, they merely added clarifications, some recommended
behaviors for encoders and decoders, and a tutorial or two. Indeed, Glenn
Randers-Pehrson has kept some so-called “paleo PNGs” that were created at
the time of Draft 9; they are still readable by any PNG decoder today (Reference
4).

https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125f1.large.jpg

PNG Home Page Graphic

Oy, My Head Hurts

But specifying a format is one thing; implementing it is quite another. Although
the original intent was to create a “lightweight” format—and, compared to TIFF
or even JPEG, PNG is fairly lightweight—even a completely orthogonal feature
set can introduce substantial complications. For example, consider progressive
display of an image in a web browser. First comes straight decoding of the
compressed data—no problems. Then any line filtering must be inverted to get
the actual image data. Oops, it's an interlaced image: pixels are appearing here
and there within each 8x8 block, so they must be rendered appropriately and
possibly buffered. The image also has transparency and is being overlaid on a
background image, adding a bit more complexity. At this point we're not much
worse off than we would be with an interlaced, transparent GIF; the line filters
and 2D interlacing scheme are pretty straightforward extensions to what
programmers have already dealt with. Even adding gamma correction to the
foreground image isn't too much trouble.

However, it's not just simple transparency; we have an alpha channel. And we
don't want a sparse display—we like the replicating progressive method that
Netscape Navigator uses. Now things are tricky: each replicated pixel-block has
some percentage of the fat foreground pixel mixed in with complementary
amounts of the background pixels in the block. And just because the current fat
pixel is 65% transparent (or, even worse, completely opaque) doesn't mean
later ones in the same block will be, too; thus, we have to remember all of the
original background pixel-values until their final foreground pixels are

https://secure2.linuxjournal.com/ljarchive/LJ/036/2125f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125f1.large.jpg

composited and overlaid. Toss in the ability to render all of this nicely on an 8-
bit, color-mapped display, and most programmers' heads will explode.

Make It So

Of course, some of these things are application (presentation or front-end)
issues, not general PNG-decoding (back-end) issues. Nevertheless, a good PNG
library should allow for the possibility of such applications—which is another
way of saying that it should be general enough not to place undue restrictions
on any programmer who wants to implement such things.

Once Draft 9 was released, many people set about writing PNG encoders and/
or decoders. The true glory is really reserved for three people, however: Info-
ZIP's Jean-loup Gailly and Mark Adler (both also of gzip fame), who originally
wrote Zip's deflate() and UnZip's inflate() routines and then, for PNG, rewrote
them as a portable library called zlib (Reference 5), and Guy Eric Schalnat of
Group 42, who almost single-handedly wrote the libpng reference
implementation (originally “pnglib”) from scratch ([Reference 6). The first truly
usable versions of the libraries were released two months after Draft 9, on the
first of May, 1995. Although both libraries were missing some features required
for full implementation, they were sufficiently complete to be used in various
freeware applications. Draft 10 of the specification was released at the same
time, with clarifications resulting from these first implementations.

Fast-Forward to the Present

The pace of subsequent developments slowed at that point. This was partly due
to the fact that, after four months of intense development and dozens of e-mail
messages every day, everyone was burned out; partly because Guy controlled
libpng's development and became busy with other things at work; and partly
because of the perception that PNG was basically “done.” The latter point was
emphasized by a CompuServe press release to that effect in mid-June. A press
release, I might add, in which their PR guys claimed much of the credit for
PNG's development (sigh).

Nevertheless, progress continued. In June of 1995 I set up the PNG home page,
now grown to roughly a dozen pages (Reference 7), and Kevin Mitchell officially
registered the “PNGf” Macintosh file ID with Apple Computer. In August,
Alexander Lehmann and Willem van Schaik released a fine pair of additions to
the NetPBM image manipulation suite, particularly handy under Linux:
pnmtopng and pngtopnm version 2.0. And in December at the Fourth
International World Wide Web Conference, the World Wide Web Consortium
(W3C) released the PNG Specification version 0.92 as an official standards-track
Working Draft.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html

1996 saw the February release of version 0.95 as an Internet Draft by the
Internet Engineering Task Force (IETF), followed in July by the Internet
Engineering Steering Group's (IESG) approval of version 1.0 as an official
Informational RFC. However, the IETF secretary still hasn't issued the actual RFC
number at the time of this writing, six months later (sigh). The Virtual Reality
Modeling Language (VRML) Architecture Group in early August adopted PNG as
one of the two required image formats for minimal VRML 2.0 conformance
(Reference 8). Meanwhile the W3C promoted the spec to Proposed
Recommendation status in July and then to full Recommendation status on the
first of October (Reference 9). Finally, in mid-October the Internet Assigned
Numbers Authority (IANA) formally approved “image/png” as an official Internet
media type, joining image/gif and image/jpeg as non-experimental image
formats for the Web. Much of this standardization would not have happened
nearly as quickly without the tireless efforts of Tom Lane and Glenn Randers-
Pehrson, who took over editing duties of the spec from Thomas Boutell.

Current Status

So where are we today? The future is definitely bright for PNG, and the present
isn't looking too bad, either. I now have over 125 applications listed (Reference
10) with PNG support either current or planned (mostly current). Among the
ones available for Linux are:

• XV: image viewer/converter
• ImageMagick: image viewer/converter
• GRAV: image viewer
• Zgv: image viewer
• xli: image viewer
• XPaint: image editor
• The GIMP: image editor
• Image Alchemy: image converter
• pnmtopng/pngtopnm: image converters
• XEmacs: editor/web browser/operating system/etc.
• gforge: fractal terrain generator
• Fractint: fractal generator
• Ghostscript: PostScript viewer/converter
• GNUplot: plotting program
• PV-WAVE: scientific visualization program
• POV-Ray: ray-tracer
• VRweb: VRML browser
• X Mosaic: web browser

https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html

• Arena: web browser
• Chimera: web browser
• Grail: web browser
• Amaya: web browser/editor
• Mapedit: image map editor
• WWWis: HTML IMG sizer
• file(1): Unix file type identifier

Discerning readers will note the conspicuous absence of Netscape Navigator.
Netscape is still only “considering” future support of PNG despite the following
facts:

1. Netscape was aware of the PNG project from the beginning and
unofficially indicated “probable support.”

2. The benefits brought to WWW applications by gamma correction, alpha
support and 2D interlacing.

3. The WWW Consortium, of which Netscape is a member, released the PNG
spec as its first official Recommendation.

4. Support of PNG is required in VRML 2.0 viewers like Netscape's own
Live3D plug-in.

5. Netscape has received considerable pestering by members of the PNG
group and the Internet community at large.

Until Netscape either supports PNG natively or gets swept away by Microsoft or
someone else, PNG's usefulness as an image format for the Web is
considerably diminished.

On the other hand, our friends at Microsoft recognized the benefits of PNG and
apparently embraced it wholeheartedly. They have not only made it the native
image format of the Office97 application suite but have also repeatedly
promised to put it into Internet Explorer. (Theoretically by the time of the 4.0
betas—we'll see if that happens.) Assuming they do, Netscape is almost certain
to follow suit. (See? Microsoft is good for something!) At that point PNG should
enjoy a real burst of WWW interest and usage.

In the meantime, PNG viewing actually is possible with Linux Netscape; it's just
not very useful. Rasca Gmelch is working on a Unix plug-in with (among other
things) PNG support. Although it's still an alpha version and requires
ImageMagick's convert utility to function, that's not the problem, Netscape's
brain-damaged plug-in architecture is. Plug-ins have no effect on HTML's IMG
tag: if there's no native support for the image format and no helper application
defined, the image is ignored regardless of whether an installed plug-in
supports it. Instead you must use Netscape's EMBED extension. That means

anyone who wants universally viewable web pages loses either way: PNG with
IMG doesn't work under Netscape, and PNG with EMBED doesn't work under
much of anything except Netscape and MSIE, and then only if the user has
installed a working PNG plug-in.

However, support by five or six other Linux web browsers isn't bad, and even
mainstream applications like Adobe's Photoshop now do PNG natively. More
are showing up every week. Life is good.

The Future

As VRML takes off—which it almost certainly will, especially with the advent of
truly cheap, high-performance 3D accelerators—PNG will go along for the ride.
JPEG, the other required VRML 2.0 image format, doesn't support transparency.
Graphic artists will use PNG as an intermediate format because of its lossless
24-bit (and up) compression, and as a final format because of its ability to store
gamma and chromaticity information for platform independence. Once the “big
name” browsers support PNG natively, users will adopt it as well—for the 2D
interlacing method, the cross-platform gamma correction, and the ability to
make anti-aliased balls, buttons, text and other graphic elements that look
good on any color background. No more “ghosting,” thanks to the alpha-
channel support.

Indeed, the only open issue is support for animations and other multi-image
applications. In retrospect, the principal failure of the PNG group was its delay
in extending PNG to MNG, the “Multi-image Network Graphics” format. As
noted earlier, everyone was pretty burned out by May 1995; in fact, it was a full
year before serious discussion of MNG resumed. As (bad) luck would have it,
October 1995 is when the first Netscape 2.0 betas arrived with animation
support, giving the (dying?) GIF format a huge resurgence in popularity.

At the time of this writing (mid-January 1997), the MNG specification has
undergone some 31 drafts—almost entirely written by Glenn Randers-Pehrson
—and is close to being frozen, although there has been a recent burst of new
activity. A couple of special purpose MNG implementations have been written,
as well. But MNG is too late for the VRML 2.0 spec, and despite some very
compelling features, it may never be perceived as anything more than PNG's
response to GIF animations. Time will tell.

At Last...

It's always difficult for an insider to render judgment on a project like PNG; that
old forest-versus-trees thing tends to get in the way of objectivity. But it seems
to me that the PNG story, like that of Linux, represents the best of the Internet:

international cooperation, rapid development and the production of a “Good
Thing” that is not only useful but also freely available for everyone to enjoy.

Acknowledgments

I'd like to thank Jean-loup Gailly for his excellent comp.compression FAQ, which
was the source for much of the patent information given above (Reference 11).
Thanks also to Mark Adler and the Jet Propulsion Lab (JPL), who have been the
fine and generous hosts for the PNG home pages, zlib home pages, Info-ZIP
home pages and my own personal home pages. Through no fault of Mark's,
that all came to an end as of the new year; oddly enough, JPL has decided that
none of it is particularly relevant to planetary research. Go figure.

Greg Roelofs escaped from the University of Chicago with a degree in
astrophysics and fled screaming to Silicon Valley, where he now does
outrageously cool graphics, 3D and compression stuff for Philips Research. He
is a member of Info-ZIP and the PNG group, and he not only maintains web
pages for both of those but also for himself and for the Cutest Baby in the
Known Universe. He can be reached by e-mail at newt@pobox.com or on the
Web at http://pobox.com/~newt/. The Cutest Baby in the Known Universe can
be seen at http://pobox.com/~newt/greg_lyra.html. The Info-ZIP home page
moved to http://www.cdrom.com/pub/infozip/ at the beginning of the year, and
the PNG home page moved to http://www.wco.com/~png/, as noted above.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/036/2125s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #36, April 1997

Our experts answer your technical questions.

Doubling Connection Speed

I have heard that it's possible to set up Linux to combine two analog modems
into one so as to double the speed of a connection. Is this true? If so, how does
this work and where can I get more information on how to do this? I have
Slackware 96. —Keith Bell

Load Balancing

What you want to do is called load balancing. There is a feature you must
compile into your kernel for load balancing to work and it is designed to work
only with SLIP or PPP. The feature you must compile is EQL, or “Serial Line Load
Balancing”. As you configure your kernel there is a small amount of help
available on the option. If you look at the file /linux-source-directory/drivers/

net/README.eql, you can get more information on how this works and what
you need to do. Be aware that this must be supported by the other end of the
connection—either another Linux box compiled with this feature or a
Livingston Portmaster 2e. —Chad Robinson, BRT Technical Services
Corporation chadr@brttech.com

Mysterious Messages

I am running named as a primary DNS server. It appears to be working fine, but
my /var/adm/messages file is full of lines like the following:

Dec 5 09:34:14 lancomm named[105]: NSTATS 849796454 849648847 A=528
PTR=76 MX=96 ANY=202
Dec 5 09:34:14 lancomm named[105]: XSTATS 849796454 849648847 RQ=902
RR=634 RIQ=0 RNXD=49 RFwdQ=393 RFwdR=562 RDupQ=5 RDupR=6 RFail=1 RFErr=0
RErr=0 RTCP=0 RAXFR=0 RLame=15 ROpts=0 SSysQ=53 SAns=509 SFwdQ=393
SFwdR=562 SDupQ=426 SFail=19 SFErr=12 SErr=1 RNotNsQ=886 SNaAns=339
SNXD=49

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

These messages are logged every few minutes. Are these merely extraneous
debug messages, or is named misconfigured? —Bill Cunningham

Extended Statistics

They are debug messages, and don't mean there is a configuration error. Those
messages are the “extended statistics”, a compile-time option for named. If
you'd like to disable this logging, simply recompile named with the XSTATS

option commented out in the file:

~/conf/options.hz

—Bob Hauck, Wasatch Communications Group bobh@wasatch.com

More Colors in X-Windows

When I run X-Windows the desktop resolution is 340X400 with 16 colors. I am
wondering how to get my X server to run with a resolution of 800X600 with 256
or higher colors. I am having a hard time finding documentation or manual
pages on how make this change. I am running Slackware 1.2.1 and using a
Cirrus controller. —Matt Linak

Upgrade Needed

Your distribution is very old. You should switch to XFree86-3.2, which includes
many more supported cards. Most Cirrus controllers are supported now. Take
a look at the README.Cirrus file in the XFree86 web site: www.xfree86.org . —
Pierre Ficheux, Lectra Systemes pierre@rd.lectra.fr

Setting Up An X Terminal

I am running Linux 2.0.0 and have a second PC that I use a a terminal (serial)
using a DOS term program. It's a 486 that used to be my main machine until I
upgraded. I have been trying to find information on setting it up as an X
terminal, but all the HOWTO and /usr/doc files seem to focus on other things.
It's my understanding that if I put a small Linux kernel on it and use NFS for
root that I should be able to do this as the machine has very limited resources
these days. I know I can switch to PLIP for reasonable speed, and I have good
documentation on using NFS as root, but I have not uncovered the missing
information on setting it up as an X terminal. Can you direct me to a source? —
Josh

Inexpensive Hardware and xdm

You do need at least some disk resources to be able to set your H86 up as an X-
terminal. There are ways to do a complete net-boot on a PC, but those include

obtaining a 3C509 or NE2000 Ethernet card and a boot ROM. I haven't dealt
with this method, though, because hard disks are becoming very cheap.

I recommend getting a 120MB IDE drive (you should be able to find a used one
for around $25), and installing that. Then install a minimal Linux system
including X, and you are set. You will need networking of some type since most
Linux distributions require Ethernet for a network install. If you don't have a
CD-ROM on that box, you'll probably want to do a network install, so pick up a
cheap networking card (new NE2000 clones run about $25).

Now, for using the 486 as an X terminal, the easiest way is with xdm. You run it
on your main machine, configure X on your 486, and you can then run X -query

hostname on your other machine. That solution will run an X server locally, but
will run all binaries off your main machine. —Donnie Barnes, Red Hat Software
redhat@redhat.com

Managing Modules

When I build a kernel (2.0.26 is the latest) with loadable module support
enabled, I have troubles with the old modules compiled for 2.0.0. When I make

the modules for 2.0.26, only one module is built and put under /lib/modules/

2.0.26. How do I manage the other modules? When I put the 2.0.0 modules
under 2.0.26, the system complains you must recompile. How do I recompile
them? —Ivo Naninck

Patch or Scratch?

You did not mention whether you have applied a patch or installed a
linux-2.0.26.tar.gz. If you have installed from scratch, don't forget to run make

menuconfig, in order to select which features you want as modules. If you have
applied a patch, use:

make dep
make clean
make zImage<\n>
make modules
make modules_install

I would prefer using make zlilo rather than make zImage, but the latter would
work. This should compile your kernel and all the modules you have specified.
Once the kernel is installed, you should be able to take care of dependencies
with the command depmod -a the next time you boot. —Mario de Mello
Bittencourt NetoWebSlave System Administrator

Making Rescue Disks

I am wondering if there is a guide on how to make a rescue disk that includes
my choice of kernel and root, including some basic tools to help me restore my
box in case of an accident. —Eskinder Mesfin

Bootdisk HOWTO

The Linux Bootdisk HOWTO by Graham Chapman (grahamc@zeta.org.au)
describes how to create maintenance disks. The text is available at http://
sunsite.unc.edu/LDP/HOWTO and ftp://sunsite.unc.edu/pub/Linux/docs/
HOWTO. —Martin Michlmayer tbm@cyrius.com

Linux Won't Accept Mask

We have a complex 10B2 network with 4 subnets. We recently got connected to
the Internet with ISDN and a Pipeline 50 and were given a single class C
address. We have created a subnet scheme for assigning IPs to all of our
WFW3.11, Win95, and WinNT computers. When we tried to set up the Linux box
as an HTTP and ftp server, we were unable to get the Linux software to accept
255.255.255.224 as the subnet mask. Will Linux do subnets this way? —Richard
C. Guglomo

Linux And Subnets

Linux does do subnets, and 224 is a valid mask. Valid masks must have
contiguous high bits set and 224 is 1110 0000 in binary. In theory this should
work, but there are some pitfalls.

It could be that the IP you are assigning to the interface isn't on a valid 224
subnet. With that mask your network addresses will be 5 bits. In other words,
subnets will fall on multiples of 32 (decimal)—0, 32, 64. Those IP addresses are
“network addresses” and can't be used for an interface. Similarly, the “all ones”
addresses are reserved for broadcast—that would be 31, 63, and so on in this
case.

You cannot assign a network address as the IP for a specific interface. So, you
can't use something like 192.168.1.32 as the interface address. Instead you
should use 33-62 for the devices on the 32 subnet (63 would be the broadcast
address and is also reserved), 65-95 for the 62 subnet, and so on. —Bob Hauck,
Wasatch Communications Group bobh@wasatch.com

Can't Disable LILO

I have installed Red Hat, and I now want the option of running another OS on
my machine, but I have not been able to disable LILO. I have installed DOS, but

when the machine re-boots, I get LILO, and when I press TAB, I have no other
options. I have fdisked the hard drive through both the Red Hat install program
and DOS without any luck. I wanted to move the LILO from the mbr but have
not been able to do this. —Josef Davis

Adding DOS option to LILO

You can replace LILO with the DOS boot loader by issuing the DOS command
fdisk /mbr. In your case, however, the solution is to add DOS as an option to
LILO. You can do this by adding the following directive at the end of the LILO
configuration file, /etc/lilo.conf:

other = /dev/sda4
label = DOS
table = /dev/sda

You have to replace the value of other with the device of your DOS partition;
the same applies to table where you have to insert the device of your hard disk
(/dev/hda in the case of the first IDE hard disk).

After inserting these lines you have to refresh the boot record by issuing /sbin/

lilo as root. When booting your machine the next time, you will have the option
DOS within LILO. —Martin Michlmayer tbm@cyrius.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/036/toc036.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	Serial Terminal as Console
	Francesco Conti
	Kernel Messages
	Messages from /etc/rc.d/rc.*
	LILO Configuration
	Conclusion

	Building the Perfect Box: How To Design Your Linux Workstation
	Eric S. Raymond
	What To Optimize
	What Processor Should I Buy?
	One Disk or Two?
	Monitor And Video
	Easier Choices
	Some Pitfalls To Avoid.
	How To Buy
	When To Buy
	The Recipe File
	Questions To Ask Your Vendor
	After You Take Delivery

	Thread-Specific Data and Signal Handling in Multi-Threaded Applications
	Martin McCarthy
	Thread-specific data
	Signal Handling
	Differences in Signal Handling between POSIX
Threads and LinuxThreads
	Summary

	Creating Animations with POV-Ray
	Andy Vaught
	Running POV
	Making an Animation
	More Information

	The /proc File System And ProcMeter
	Andrew M. Bishop
	What Is the /proc File System?
	What Is in This File System?
	Some Common Files in /proc
	Of What Use Is All This Information?
	What is ProcMeter?
	What Can ProcMeter Tell Me?
	How Can ProcMeter Help?
	Where to Get ProcMeter

	Somebody Still Uses Assembly Language?
	Richard Sevenich
	Why Use Linux? Which Distribution?
	Writing Our Own Assembly Language
Programs
	Examining Assembly Language as Written by
Others
	Conclusion

	Applixware
	Gary Moore

	Book Reviews: Active Java and Exploring Java
	Danny Yee

	Using Perl to Check Web Links
	Jim Weirich
	The LWP Library
	Getting a Document
	Parsing the Document
	Putting It Together
	Results

	Creating a Multiple Choice Quiz System with CGI
	Reuven M. Lerner
	Creating an Object
	Asking the Right Questions
	Ending the Suspense
	The Initial HTML

	Letters to the Editor
	Various
	The Global Perspective
	Is Java a Threat?
	Multithreaded Programming Library
	Finding a Users' Group
	In Stores Now!

	Linux—The Internet Appliance?
	Phil Hughes
	What Is Needed?
	Can This Be Done?
	How Do We Build It?
	This Is Called Win-Win

	Usenix/Uselinux in Anaheim
	Phil Hughes
	Tutorial Days
	The Trade Show
	Linus Talks and Linux Talks
	What Next?

	Using Linux at Lectra-Systèmes
	Pierre Ficheux
	Why Use Unix?
	Lectra's Cultural Revolution
	Developments under Linux
	Installation Procedure
	OpenPartner Desktop
	Lectra applications
	Design
	Pattern Making
	The Marker
	The Cut and Plot
	The Production Management
	Problems Encountered
	Conclusion

	A 10-Minute Guide for Using PPP to Connect Linux to the Internet
	Terry Dawson
	Preparation
	Configuring PPP
	Configuring the Name Resolver
	Starting the Link
	Testing the Connection
	Dropping a Connection
	Making PPP Automatically Redial
	Conclusion

	od—The Oddest Text Utility Around
	Randy Zack

	New Products
	M. L. Richardson
	Raima Database Manager
	PC Watchdog
	TextSurgeon 2.0
	Edith Pro/X11
	Java Numeric Library
	MagicFax
	F-Secure Data Security Software
	Stronghold 2.0

	Indexing Texts with SMART
	Hans Paijmans
	Why Indexing Is Not Enough
	SMART
	The DOS Connection
	The Bad News

	History of the Portable Network Graphics (PNG) Format
	Greg Roelofs
	Prehistory
	The Early Days (All Seven of 'Em)
	Onward, Frigidity
	Oy, My Head Hurts
	Make It So
	Fast-Forward to the Present
	Current Status
	The Future
	At Last...
	Acknowledgments

	Best of Technical Support
	Various
	Doubling Connection Speed
	Load Balancing
	Mysterious Messages
	Extended Statistics
	More Colors in X-Windows
	Upgrade Needed
	Setting Up An X Terminal
	Inexpensive Hardware and xdm
	Managing Modules
	Patch or Scratch?
	Making Rescue Disks
	Bootdisk HOWTO
	Linux Won't Accept Mask
	Linux And Subnets
	Can't Disable LILO
	Adding DOS option to LILO

